
Research report

Advanced mathematical and statistical
methods in evaluating instrumented

indentation measurements

Souhrnná výzkumná zpráva projektu TAČR TJ02000203

Anna Charvátová Campbell1, Zdeňka Geřslová2, Vojtěch Šindlá̌r2,
Radek Šlesinger1, Jǐŕı Šperka1, Gejza Wimmer2, Stanislav Zámečńık2

1Department of Primary Nanometrology and Technical Length,
Czech Metrology Institute

2Department of Mathematics and Statistics, Masaryk University

31 March 2021

Contents

I Research project 4

1 Project overview 5
1.1 Basic project information . 5
1.2 Project team . 6
1.3 Background and state of knowledge . 6
1.4 Objectives and achieved goals . 7

II Introduction 9

2 Evaluation of instrumented indentation measurements 10
2.1 Determination of the indentation hardness and Young’s modulus 10
2.2 Calibration of the tip area function . 12

3 Niget software 14

III Mathematical and statistical methods for data regression and uncer-
tainty propagation 16

4 Parametric nonlinear regression 17
4.1 Overview of existing methods and software . 17
4.2 New algorithm . 18

4.2.1 Theoretical background . 18
4.2.2 Procedure description . 21
4.2.3 Confidence and prediction intervals . 22

4.3 Algorithm implementation . 22
4.3.1 System matrix inverse . 23

4.4 R package . 25
4.5 C library . 30
4.6 Validation of algorithm performance . 31

4.6.1 NIST reference data for nonlinear regression 31
4.6.2 Examples for INRIM WTLS/CCC software 33

5 Effective uncertainty propagation 36
5.1 Higher-order uncertainty propagation . 36

5.1.1 SOERP . 36
5.1.2 R Propagate . 37

5.2 Latin Hypercube Sampling . 37

2

IV Application in instrumented indentation 39

6 Estimating parameters of the unloading curve 40

7 Uncertainty propagation 42
7.1 Matrix-based uncertainty propagation . 42
7.2 Monte Carlo simulations . 42

8 Calibration of the contact area function 43
8.1 New software tools . 43
8.2 Evaluation of different area function forms . 45

8.2.1 Comparison of evaluated functions at different contact depths 45
8.2.2 The behaviour of different area function forms 52
8.2.3 Influence of correlations present in area calibration data 54

9 Example data evaluation 59

Conclusion 63

Bibliography 65

3

Part I

Research project

4

Chapter 1

Project overview

1.1 Basic project information

Project name in English:
Advanced mathematical and statistical methods in evaluating instrumented indentation mea-
surements

Project name in Czech:
Pokročilé matematické a statistické metody ve vyhodnocováńı měřeńı instrumentovanou inden-
taćı

Project identification code: TJ02000203

Project acronym: MathForIndentation

Key words in English:
Instrumented indentation; uncertainties; Oliver-Pharr method; orthogonal data regression; ex-
perimental design, Niget software, R (programming language).

Key words in Czech:
Instrumentovaná indentace; nejistoty; Oliverova-Pharrova metoda; ortogonálńı regrese; návrh
experiment̊u, Niget software, R (programovaćı jazyk).

Funding agency: Technology Agency of the Czech Republic

Call for proposals the project is submitted in: ZÉTA 2

Project participants:

Český metrologický institut (CMI)
Main participant (Czech Metrology Institute, www.cmi.cz)

Masarykova univerzita (MU)
Other participant (Masaryk University, www.muni.cz)

Start of the project solution: April 2019

Completion of the project solution: March 2021

5

1.2 Project team

Researchers

Mgr. Radek Šlesinger, Ph.D. Lead solver, CMI

Mgr. Jǐŕı Šperka, Ph.D. Member of the Research Team, CMI
Mgr. Zdeňka Geršlová Other solver, MU

Mgr. Vojtěch Šindlář Member of the Research Team, MU

Mentors

Mgr. Anna Charvátová Campbell, Ph.D. CMI
prof. RNDr. Gejza Wimmer, DrSc. MU

Other personnel

Mgr. Stanislav Zámečńık MU

1.3 Background and state of knowledge

Progress in nanotechnology and the development of new materials (nanocomposites, thin layers,
nanoparticles) and currently also the study of biological samples require good quality methods
for the analysis of local mechanical properties. Instrumented indentation testing (also known
as depth-sensing indentation, continuous-recording indentation, ultra-low-load indentation, and
nanoindentation [10]) is one of the most common techniques for the study of a wide range
of mechanical properties of the materials, especially hardness and Young’s modulus but also
yield stress, viscoelastic parameters, material hardening and other. It consists, in its most
common form, of pressing a hard tip with geometrically well-defined shape (typically diamond)
into the sample while continuously measuring both load and indentation depth. The maximum
indentation depths range typically from hundreds of nanometers up to tens of micrometers;
typical loads range from tens of micronewtons up to several newtons. This technique enable
detailed point-to-point measurements localised on the sample surface and also the mapping of
mechanical properties of nonhomogeneous materials thanks to a lateral resolution on the order
of several micrometers.

Hardness and Young’s modulus are the two most commonly studied mechanical proper-
ties. Currently the standard procedure for their determination from the load-depth data is the
method by Oliver and Pharr [27]. This method is standardized in the ISO 14577-1 standard
(Metallic materials — Instrumented indentation test for hardness and materials parameters).
The procedure is fairly complex including regressions of load-depth curves. However, the ISO
standard does not list all details of the procedure, such as the choice of interval for the regres-
sion or the method of regression itself. This can lead to differences between results coming from
different implementations.

The most commonly used regression method is least squares, which is also recommended
in the ISO standard. However, this allows to treat only errors in the dependent variable y.
While this is sufficient for many applications, in instrumented indentation the errors in both
dependent and independent variable are inevitable. Furthermore we can expect also correlations
between dependent and independent variables and between independent variables among each
other. The inclusion of correlations has been partially addressed in the metrological setting
for correlations between x and y pairs or straight lines in e.g. [23] and [16]. In instrumented
indentation the bias of least squares method due to errors in the input data has been addressed
in [15]. To the authors’ best knowledge the question of correlations in indentation data has not
been treated so far.

6

The Oliver-Pharr method makes use of the geometric shape of the tip. The dependence of
the area of the cross section of the tip at a given height on this height is called area function. For
its determination a series of indentations are measured on a reference sample, resulting in a set
of discrete depth-area pairs. Details are described in section 8. The use of these discrete data
via e.g. interpolation is possible, however, in practice the data are fitted by a suitable function.
The most common choice is a fractional polynomial as suggested by Oliver and Pharr [27], but
ordinary polynomials can be used as well [8]. A rigorous discussion how to choose the function
and e.g. its degree is missing so far, to the best of our knowledge. Different measurement
schemes can be used. Two examples are clustered data, consisting of multiple indentations at
different loads, and equally spread data. The impact of the choice of the measurement scheme
has not been studied so far either. As the data are all measured on one and the same reference
sample, the mechanical properties of this sample act as a source of correlation between different
variables leading to a highly nontrivial covariance matrix which must be correctly treated in
the fitting procedure.

Monte Carlo analysis of uncertainties as described in [11] is based on propagating probabil-
ity distribution functions of input variables. Data sets of input variables are drawn randomly
according to their probability distribution functions and evaluated as if they were real measure-
ments. The result is an empirical distribution function of the output variables. In nanoinden-
tation this can be used and is implemented in Niget software. However, the computation time
is long and grows rapidly with the number of input variables making the method impractical
for every day use. Other methods for generating random numbers are available which can cover
the range of the values more effectively, such as Latin Hypercube Sampling [25] or Orthogonal
sampling [28] are not mentioned in metrological literature, to our best knowledge.

1.4 Objectives and achieved goals

This research report presents the design, implementation and verification of mathematically
correct methods suitable for the key phases of indentation measurements, particularly:

• calibration of the tip contact area function,

• nonlinear regression for correlated data with errors in both x and y variables,

• uncertainty analysis throughout the whole evaluation process.

All developed methods are suitable for indentation metrology. Nonlinear regression has
been verified on datasets from literature [21, 22]. All methods have been integrated into Niget
software for complex analysis of indentation data, partly in the main graphical application,
partly as standalone scripts. Moreover, an independently usable method for nonlinear regres-
sion of correlated data has been implemented for the statistical software R for use by a wider
statisticians community. All the software created is freely distributable under a free software
license.

The computing demands are moderate allowing a quick analysis. Some computations can
require a significant amount of memory.

The presented measurement evaluation methods are based on the following achievements:

• Nonlinear orthogonal regression allowing general correlations between x and y data, with-
out restrictions on the fitted function.

• Estimations of uncertainties.
Latin Hypercube Sampling has been used as a new approach to generate pseudo-random
numbers. The resulting empirical distributions can be used for further computations in
Niget software.

7

• Design of experiments.
Using the general nonlinear orthogonal regression developed in this project it has been
possible to compare the statistical performance of different functions used for as area
function as well as for different measurement setups. Preliminary recommendations for
the measurement setup for the calibration area functions can be given, though more data
from different instruments will be needed.

Statistically suitable and optimalised measurement procedure (minimize uncertainty of
calculated contact area) for the calibration of the tip area function using reference sample
with related recommendations is presented. Suitable representation of the area function
is proposed.

8

Part II

Introduction

9

Chapter 2

Evaluation of instrumented
indentation measurements

In this section we list the most important aspects for the evaluation of hardness and Young’s
modulus using the Oliver-Pharr method [27]. More details can be found in literature, for an
introduction see e.g. [7]. The Oliver-Pharr method and the calibration of the nanoindentor are
standardized in the ISO standards ISO 14577-1:2015 [13] and ISO 14577-2:2015 [14].

2.1 Determination of the indentation hardness and Young’s mod-
ulus

The Oliver Pharr method works only with the unloading part of the load-depth data, the tip
area function and, optionally, with the Poisson’s ratio of the sample and tip and the Young’s
modulus of the tip. The area function must be determined separately, either by geometrical
considerations or experimentally, e.g. by the method described in section 8. The modulus of
the tip as well as the two Poisson’s ratios are usually taken from literature. The procedure is
as follows:

1. A suitable part of the unloading curve (hi, Fi) for i = 1, . . . , N is fitted by a power law
function

F = α(h− hp)m. (2.1)

Here α, hp and m are parameters which are found by regression. The ISO standard
recommends a range of 20–98 %, however this may be adapted to the given sample.

2. The auxiliary parameter ε is calculated from the power m

ε = m

1−
2(m− 1)Γ

(
m

2(m−1)

)
√
πΓ
(

1
2(m−1)

)
 , (2.2)

Γ is the Gamma-function.

3. The slope of the power law function at maximum load Fmax is calculated is

S =
dF

dh

∣∣∣∣
F=Fmax

. (2.3)

4. The contact depth is calculated as

hc = hmax − ε
Fmax

S
. (2.4)

10

Fi
load sensor data

parametric regression for i = 1,...,N
F(h) = α (h - hp)mFmax

hi
depth sensor data

hmax
depth value

corresponding to Fmax

ε(m) S = 1 / (dh/dF) (Fmax)

hc = hmax - ε(m) Fmax / S

HIT = Fmax / Ap(hc)

Er = √ π S / (2 β √(Ap(hc)))

Ap(hc)

Ap(-)
contact area function
determined separately

EIT = (1 - νs
2) / (1 / Er - (1 - νi

2) / Ei)

νs νiEi

Figure 2.1: Computation schema of indentation modulus and hardness.

5. The contact area Ap is evaluated at the contact depth hc.

6. The indentation hardness can be evaluated as

HIT =
Fmax

Ap(hc)
. (2.5)

7. The reduced modulus of elastic contact can be calculated as

Er =
√
π

S

2β
√
Ap(hc)

, (2.6)

where β is a constant used to account for the difference between a conical tip and the real
tip.

8. The indentation modulus is

EIT =
1− ν2

1
Er
− 1−ν2i

Ei

. (2.7)

Here ν is the Poisson’s value of the sample and νi and Ei are the Poisson’s value and the
modulus of the tip.

11

Fj,i
load sensor data

parametric regression for i = 1,...,Nj
Fj(h) = α j (h - hp,j)m

j
Fmax,j

hj,i
depth sensor data

hmax,j
depth value

corresponding to Fmax,j

ε(mj) Sj = 1 / (dhj/dF) (Fmax,j)

hc,j = hmax,j - ε(mj) Fmax,j / Sj Ap,j = π Sj
2 / (4 β2 Er

2)

E*
ref

Er = 1 / (1 / E*
ref + (1 - νind

2) / Eind)

Eind νind

(parametric) regression for j = 1,...,M
Ap(hc) - e.g. polynomial or ``root polynomial''

Figure 2.2: Computation schema of contact area function calibration.

2.2 Calibration of the tip area function

The most popular method for calibrating the tip area function is by performing a set of inden-
tations on a reference sample with known Young’s modulus EIT or plain strain modulus E∗.
Other methods e.g. using atomic force microscopy exist but are not studied in this project.

The contact area function calibration involves fitting a curve through a series of M points
given by the tuples ((hc)j , (Ap)j) for j = 1, . . . ,M . Each such tuple is typically determined
from a single indentation unloading curve, represented by depth-load values ((hj)i, (Fj)i) for
i = 1, . . . , Nj . (Although alternative approaches exist, where multiple points can be extracted
from a single indent, thus saving time needed to perform the necessary measurements, the
function fitting is present anyway.) For each unloading curve the contact depth and slope as
described in the previous section are determined. The inverse relation to equation (2.6) is used
and the contact area is calculated as

Ap =
π

4β2
S2

E2
r

. (2.8)

The reduced modulus of contact can be calculated either using Young’s modulus or the plain
strain modulus of the sample

1

Er
=

1− ν2

EIT
+

1− ν2i
Ei

(2.9)

or
1

Er
=

1

E∗
+

1− ν2i
Ei

, (2.10)

depending on the information available. The schema in Figure 2.2 essentially captures the
calculations.

Note that the values of contact depth and area are not independent, and neither are the
contact area values at different depths. Actually, multiple correlation is always present in the
contact area calibration data:

12

1. For each point i, the contact depth hci and the respective area Api are correlated via α,
m, and Fmax.

2. For each pair of points i, j, the respective contact areas Api and Apj are correlated via
the reduced contact modulus of the reference sample Er.

We are aware that the procedures investigated in this project (nonlinear function fitting, un-
certainty propagation, handling correlated data) are still being further developed and improved,
and alternative approaches and methods exist and have been under investigation. However, one
can reasonably assume that any of the alternatives requires the same apparatus when measure-
ment uncertainty becomes involved.

13

Chapter 3

Niget software

Niget is a free open source software for the general analysis of nanoindentation data. The current
version of Niget software can be downloaded from http://nanometrologie.cz/niget/.

Niget has a graphical user interface which allows for comfortable usage and visualization.
Niget is written in the C language, with its graphical user interface based on the GTK2

toolkit. Its data plotting capabilities draw on the libraries from the Gwyddion scanning probe
microscopy data analysis software [26].

The first version of Niget software with range of included analysis methods has been pre-
sented in 2019 in an original software publication [5], freely available in open access format.
The aspect of free software license has several advantages from metrology point of view:

• Users can have insight to all data processing procedures.

• Users can evaluate their data in a reproducible way and compare results of their measure-
ments

• Users can read the source code and possibly contribute to development or suggest software
improvement.

The software implements several methods for the analysis of nanoindentation data, namely
the Oliver-Pharr analysis, tangent method, Hertz analysis, Oliver’s two slopes method, differ-
ential hardness, stiffness evaluation and elastic-plastic work analysis. It attempts to use as few
built-in constants as possible and to leave all other parameters for the user to choose. The
individual evaluation tools are independent, they only use shared functions, data types, and
structures. The open code allows a user to follow through all steps of the evaluation.

Development of Niget is still under progress, with features being regularly added. Currently,
only several formats are supported for the input of load depth curves and tip area functions.
For processing data from an unsupported instrument, the data should be exported from the
instrument software and converted to one of the supported text formats. For further work with
data already preprocessed (defining important segments of the load-depth curve) in Niget, an
own file format is used.

Internally, Niget consists of two principal components:

• A base software library providing data structures and evaluation procedures. The library
is licensed under LGPLv2.1, which allows dynamic linking by other software.

• A graphical user interface program using functionality provided by the library. Niget GUI
is licensed under GPLv2.1.

Due to its open nature, Niget provides a convenient platform for including new methods for
data evaluation as well as for inclusion of existing software packages for specific computation
tasks. When investigating existing software packages to be included in Niget, two key criteria
are followed:

14

http://nanometrologie.cz/niget/

• a free license, compatible with LGPL, allowing further redistribution of the software

• a proven implementation, preferably in C or Fortran, with detailed documentation.

State at the beginning of the project Basic uncertainty analysis is implemented in Niget.
Curve fitting is performed in most cases using ODRPACK95 software package [36]. This allows
for the consideration of uncertainties in both x and y variables but does not allow for including
correlation between variables. Uncertainty propagation is calculated using Gauss’s law of un-
certainty propagation. Basic Monte Carlo treatment of uncertainties as described in GUM-S1
[11] is partially implemented but due to its large time demands it is not very practical.

15

Part III

Mathematical and statistical
methods for data regression and

uncertainty propagation

16

Chapter 4

Parametric nonlinear regression

Due to the nature of data this project has focused on, in this report we only deal with methods
and software applicable to fitting nonlinear functions, and do consider tools for straight-line
fitting.

In so called nonlinear least squares (NLS) method, the goal is to minimize the sum of
squared vertical residuals (distances between the y-values of data points and the values of the
fitted function). However, this method is not suitable for data where there are errors also in
the explanatory data (x), or they also have an uncertainty (e.g. when both variables come from
measurement, none of which can be considered as accurate and precise).

The goal is then to minimize the sum of squared orthogonal residuals (the actual Euclidean
distances between the points and the curve). Such a method is then called Orthogonal Distance
Regression (ODR).

4.1 Overview of existing methods and software

ODRPACK A pioneering effort for fitting errors-in-variables data by nonlinear functions
was ODRPACK, the algorithm presented in [3]. Its software implementation [4] was written in
FORTRAN 77, and is available at https://www.netlib.org/odrpack/, distributed as public
domain. ODRPACK provides a number of features, namely:

• both ODR and NLS using an implementation of Levenberg-Marquardt method,

• both scalar and vector functions of multiple variables,

• both explicit and implicit functions,

• weighted regression, allowing to set weights for individual values of both explanatory and
response variable.

This concept, however, does not allow to include arbitrary covariance of the input data; only
diagonal covariance matrices can be treated, typically by prescribing weights of the individual
values as squared reciprocals of their uncertainties.

The original ODRPACK software has later been rewritten in Fortran 95 as ODRPACK95
[36] (https://dl.acm.org/doi/abs/10.1145/1268776.1268782, available as public domain),
utilizing features of the more modern programming language dialect, and extending the func-
tionality of the original algorithm with bounded regression, which allows to set bounds on the
parameter estimates. Behavior of the algorithm for unbounded regression remained unchanged.

Nowadays, ODRPACK is used by scipy.odr Python module (https://docs.scipy.org
/doc/scipy/reference/odr.html), and ODRPACK95 is included in Igor Pro data analysis
software1.

1https://www.wavemetrics.com/products/igorpro/dataanalysis/curvefitting/errorsinvariables

17

https://www.netlib.org/odrpack/
https://dl.acm.org/doi/abs/10.1145/1268776.1268782
https://docs.scipy.org/doc/scipy/reference/odr.html
https://docs.scipy.org/doc/scipy/reference/odr.html
https://www.wavemetrics.com/products/igorpro/dataanalysis/curvefitting/errorsinvariables

ODRPACK95 has been included in Niget as the default fitting method for nonlinear func-
tions.

WTLS and CCC In [22], a variant of WTLS (Weighted Total Least Squares) algorithm for
functions other than straight-line was presented. The algorithm was implemented in MATLAB,
and is not restricted to any particular form of the covariance matrix of the variables. However,
it is usable only for linear models (that is, linear in parameters; linear combinations of terms
nonlinear in x, e.g. polynomials, are allowed). The WTLS algorithm has been included in
INRIM CCC (Calibration Curve Computing) software version 1.3, which can be obtained for
free at https://www.inrim.eu/research-development/quality-life/ccc-software.

A new version 2.0 of the CCC software has recently been presented [21], which features an
improved WTLS code.

ONLS The implementation of orthogonal nonlinear least squares regression (ONLS) in the R
software is available in onls package [30] also based on ODRPACK. The package allows to fit and
plot an ONLS model and compute orthogonal residuals for the estimated function. Common
generics functions (as summary for printing results, confint for computing confidence intervals,
etc.) are also part of the package. The main function onls enables computing orthogonal
weighted least squares estimation through weights argument, but using general input covariance
matrix is not possible.

4.2 New algorithm

Fitting nonlinear function with uncertainties in both, the dependent and independent variables
through minimization of orthogonal distance principle is commonly used in nanoindentaion (and
is also implemented in ODRPACK).

An alternative approach to this problem has been proposed by the project mentor Gejza
Wimmer. The method is based on linearization of a nonlinear differentiable function by Taylor
series. Using this procedure we convert the original nonlinear problem to linear regression model
with type II. linear constraints, whose statistical properties are principally described in [17] and
extended in [18]. The advantage of the method is both the possibility of implementation any
covariance matrix of input variables and straightforward obtaining the output covariance matrix
of estimated parameters. The main idea of the algorithm, linearization of a model via Taylor
series expansion and using iteration procedure to estimate the parameters, is a generalization
of a method for ellipse fitting presented in [20] and [35].

4.2.1 Theoretical background

Consider a problem of fitting a function to data with errors occurring in both variables, such
as the measurements of two physical quantities. Let’s assume data consisting of N pairs of
observed values, where the observed measurement xi is a realization of random variable Xi and
the observed measurement yi is a realization of random variable Yi. Then (according notation
in [35])

Xi = µi + εXi , Yi = νi + εYi for i = 1, . . . , N,

where µi and νi are the (unknown) true values of measured quantities and measurements errors
εXi , εYi are independent random variables satisfying εXi ∼ N

(
0, u2Xi

)
, εYi ∼ N

(
0, u2Yi

)
.

18

https://www.inrim.eu/research-development/quality-life/ccc-software

In vector notation we have

X =

X1

X2
...
XN

 =

µ1 + εX1

µ2 + εX2

...
µN + εXN

 = µ+ εX , Y =

Y1
Y2
...
YN

 =

ν1 + εY1
ν2 + εY2

...
νN + εYN

 = ν + εY .

So, we consider an observation vector

(
X
Y

)
=

X1

X2
...
XN

Y1
Y2
...
YN

,

for which it holds

E

(
X
Y

)
=

(
µ
ν

)
, cov

(
X
Y

)
=

(
ΣX ΣXY

ΣYX ΣY

)
= Σ, (4.1)

where Σ is 2N × 2N positive semidefinite matrix.
Suppose the relationship between µ and ν is given by nonlinear function g dependent on

m-dimensional vector of parameters p, then unknown parameters of the considered model are
µ1, µ2, . . . , µN , ν1, ν2, . . . , νN , p1, p2, . . . , pm associated through relationships

νi = g(µi, p1, . . . , pm), i = 1, 2, . . . , N, (4.2)

where g is a known twice continuously differentiable function. So we have a regression model
(4.1) with nonlinear constraints (4.2) on parameters.
Let

µ(0) =

µ
(0)
1

µ
(0)
2
...

µ
(0)
N

 , ν(0) =

ν
(0)
1

ν
(0)
2
...

ν
(0)
N

 , p(0) =

p
(0)
1

p
(0)
2
...

p
(0)
N

be the initial values of the parameters. If this values are close enough to the real values of
parameters, we can linearize the constraints (4.2) by first-order Taylor expansion about initial
values p(0),µ(0),ν(0) and for i = 1, 2, . . . , N we get

νi − g(µi, p1, . . . , pm) = ν
(0)
i − g(µ

(0)
i , p

(0)
1 , . . . , p(0)m) + (νi − ν(0)i)− g′µi(µ

(0)
i , p

(0)
1 , . . . , p(0)m)(µi − µ(0)i)+

− g′p1(µ
(0)
i , p

(0)
1 , . . . , p(0)m)(p1 − p(0)1)− g′p2(µ

(0)
i , p

(0)
1 , . . . , p(0)m)(p2 − p(0)2) + · · ·+

− g′pm(µ
(0)
i , p

(0)
1 , . . . , p(0)m)(pm − p(0)m) = 0,

where g′pi(·) denotes partial derivative of a function g with respect to pi in given point.
Assuming

∆µ(0) =

µ1 − µ(0)1

µ2 − µ(0)2
...

µN − µ(0)N

 , ∆ν(0) =

ν1 − ν(0)1

ν2 − ν(0)2
...

νN − ν(0)N

 , ∆p(0) =

p1 − p(0)1

p2 − p(0)2
...

pN − p(0)N

 ,

19

the vector notation for linearized constraints is

b
(0)
N,1 + B

(0)
1

(
∆µ(0)

∆ν(0)

)
+ B

(0)
2 ∆p = 0N,1, (4.3)

where

b
(0)
N,1 =

ν
(0)
1 − g(µ

(0)
1 , p

(0)
1 , . . . , p

(0)
m)

ν
(0)
2 − g(µ

(0)
2 , p

(0)
1 , . . . , p

(0)
m)

...

ν
(0)
N − g(µ

(0)
N , p

(0)
1 , . . . , p

(0)
m)

 ,

B
(0)
1 =

−g′µ1 (µ

(0)
1 ,p

(0)
1 ,...,p

(0)
m) 0 · · · 0

0 −g′µ2 (µ
(0)
2 ,p

(0)
1 ,...,p

(0)
m) · · · 0 IN,N

...
. . .

...
0 0 · · · −g′µN (µ

(0)
N ,p

(0)
1 ,...,p

(0)
m)

N,2N

,

B
(0)
2 =

−g′p1(µ

(0)
1 , p

(0)
1 , . . . , p

(0)
m) −g′p2(µ

(0)
1 , p

(0)
1 , . . . , p

(0)
m) · · · −g′pm(µ

(0)
1 , p

(0)
1 , . . . , p

(0)
m)

−g′p1(µ
(0)
2 , p

(0)
1 , . . . , p

(0)
m) −g′p2(µ

(0)
2 , p

(0)
1 , . . . , p

(0)
m) · · · −g′pm(µ

(0)
2 , p

(0)
1 , . . . , p

(0)
m)

...
... · · ·

...

−g′p1(µ
(0)
N , p

(0)
1 , . . . , p

(0)
m) −g′p2(µ

(0)
N , p

(0)
1 , . . . , p

(0)
m) · · · −g′pm(µ

(0)
N , p

(0)
1 , . . . , p

(0)
m)

N,m

,

and also rank(B
(0)
1) = N , rank(B

(0)
2) = m, rank(B

(0)
1 ,B

(0)
2) = N . We rewrite model (4.1) using

the new parameters ∆µ(0), ∆ν(0), ∆p(0). We get

E

(
X− µ(0)

Y − ν(0)

)
=

(
∆µ(0)

∆ν(0)

)
, cov

(
X− µ(0)

Y − ν(0)

)
= Σ,

where an observation vector and unknown parameters are(
X− µ(0)

Y − ν(0)

)
,

(
∆µ(0)

∆ν(0)

)
,

and system of linear constraints is given by (4.3).
Using procedure described above we converted the original nonlinear model to a linear re-

gression model with type II constraints on parameters. BLUE (best linear unbiased estimators)
of parameters ∆µ(0), ∆ν(0), ∆p(0) in such a model are (according to [18]):(

∆µ̂(0)

∆ν̂(0)

)
=

(
I2N,2N −Σ

(
B

(0)
1

)>
Q

(0)
11 B

(0)
1

)(
X− µ(0)

Y − ν(0)

)
−Σ

(
B

(0)
1

)>
Q

(0)
11 b(0), (4.4)

∆p̂(0) = −Q
(0)
21 B

(0)
1

(
X− µ(0)

Y − ν(0)

)
−Q

(0)
21 b(0), (4.5)

where (
Q

(0)
11 Q

(0)
12

Q
(0)
21 Q

(0)
22

)
=

B
(0)
1 Σ

(
B

(0)
1

)>
B

(0)
2(

B
(0)
2

)>
0

−1

= M−1
B . (4.6)

Estimators of the original parameters µ, ν, p are

µ̂(0) = µ(0) + ∆µ̂(0), ν̂(0) = ν(0) + ∆ν̂(0), p̂(0) = p(0) + ∆p̂(0).

The linearization and estimation procedure is repeated until the required accuracy (through
selected convergence criterion) is reached. Let k denote the iteration step in which the conver-

gence is achieved. Then resulting estimate of function parameters is p̂(k) (an estimate obtained

in k-th iteration step) with covariance matrix −Q
(k)
22 .

20

4.2.2 Procedure description

The algorithm consist of following parts:

(i) Initialization

– Set the initial values for the model parameters µ(0), ν(0). These are measurements
taken from data.

– Set the starting values of the parameter estimates p(0).

– Check logical argument indicating if we want to upgrade starting values of parameters
p(0).

If true, starting values p(0) are upgraded with the NLS fit (in R the nlsLM function
from minipack.lm package is used).

If false, the original starting values p(0) are used (no upgrade is done).

– Set iteration step counter, k = 0.

– Set the limit for the number of iteration steps kmax. If not otherwise stated,
kmax = 100.

– Set the iteration stopping threshold ϑ.

– Enter the iteration cycle (ii).

(ii) Iteration cycle

– Evaluate the vector b(k) and matrices B
(k)
1 and B

(k)
2 (given as in equation 4.3).

– Evaluate matrices Q
(k)
11 , Q

(k)
21 , Q

(k)
22 (given in 4.6) using Cholesky decomposition of

a top-left block of matrix MB (according to paragraph 4.3.1).

– Evaluate
(

∆µ̂(k), ∆ν̂(k)
)>

by (4.4).

– Evaluate ∆p̂(k) by (4.5).

– Set µ(k+1) = µ(k) + ∆µ̂(k).

– Set ν(k+1) = ν(k) + ∆ν̂(k).

– Set p(k+1) = p(k) + ∆p̂(k).

– Update the iteration counter, k = k + 1.

– Proceed to check iteration criterium (iii).

(iii) Iteration criterium

– Check, if the following is true:

There exists at least one j = 1, 2, . . . ,m (where m is the length of vector p(k)) such

that |p(k+1)
j − p(k)j |/|p

(k)
j | > ϑ and k < kmax.

If true, continue in a cycle and go to step (ii) again.

If false, stop the iteration cycle.

The algorithm has been called OEFPIL, which abbreviates “Optimal Estimate of Function
Parameters by Iterated Linearization”.

21

4.2.3 Confidence and prediction intervals

Assuming normality for the observation vector, (1 − α)100% confidence interval of function
g(x, p1, . . . , pm) in some (exact) point x is defined as

CI1−α =

(
g(x, p̂

(k−1)
1 , . . . , p̂

(k−1)
m)± u1−α/2

√
ω>x {−Q

(k)
22 }ωx

)
,

where

ωx =

g′p1(x, p

(k−1)
1 , . . . , p

(k−1)
m)

g′p2(x, p
(k−1)
1 , . . . , p

(k−1)
m)

...

g′pm(x, p
(k−1)
1 , . . . , p

(k−1)
m)

and u1−α/2 is (1− α/2) quantile of standard normal distribution.

By plotting confidence intervals for a sufficiently dense grid of points we obtain pointwise
confidence band of the estimated function.

Analogously, we can construct the prediction intervals. Assume another measurement Yc in
some point c and let it be normally distributed with variance σ2c , so Yc = g (c, p1, . . . , pm) + εc,
where εc ∼ N(0, σ2c). Then (1− α)100% prediction interval for Yc is defined as

PI1−α =

(
g(c, p̂

(k−1)
1 , . . . , p̂

(k−1)
m)± u1−α/2

√
ω>c {−Q

(k)
22 }ωc + σ2c

)
.

Using prediction intervals for grid of points we obtain the pointwise prediction band.

4.3 Algorithm implementation

The algorithm was first implemented in R as a rather straightforward rewrite of the originally
proposed variant for power-law fitting of indentation unloading curves. This implementation
already showed very fast convergence rate of the algorithm (usually less than 10 iterations) for a
large part of testing data. Despite the very promising results, in some cases there were problems
with determining the input values of parameters close enough to the true values (which is a
condition for using linearization via Taylor series expansion - see [18]). A solution to this was
proposed, based on previous experience at CMI, to run a NLS fit with the original starting
values, and use the NLS result as starting values for the OEFPIL algorithm. Because the
standard nls function in R uses Gauss-Newton method, which is not robust against bad starting
values, the nls.LM function from minpack.lm package was implemented into algorithm instead.
The nls.LM is based on Levenberg-Marquardt algorithm2, which is consistent with most NLS
methods in other software (ODRPACK included). The issue with problematic convergence from
far-from-optimum starting values has essentially been resolved by the described procedure for
the indentation unloading curves.

After improvement and testing algorithm for power-law relationship in nanoindentation, the
generalized version of the algorithm was developed. This generalization allows to use the pro-
cedure to any (twice continuously differentiable) function and is implemented in the R package
OEFPIL described in Section 4.4.

While investigating the issues, a key step was identified to be the calculation of inverse of the
system matrix MB (defined in equation (4.6)). The standard solve procedure used to calculate
the inverse sometimes failed due to poor conditioning of the matrix MB (κ sometimes greater
than 108). Replacing this procedure by the generalized inverse (Moore-Penrose pseudoinverse)

2https://rmazing.wordpress.com/2012/07/05/a-better-nls/

22

provided by the ginv function improved the algorithm behavior with problematic matrices, but
a more efficient method has been proposed applying the block and symmetry structure of the
matrix MB. Consider a formula for block matrix inverse [2, Proposition 3.9.7, eq. (3.9.17)]:(

A B
C D

)−1
=

(
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
. (4.7)

Assign a left upper block of MB matrix as M (i.e. M = B1ΣB>1), then we have A = M,
B = B2, C = B>2 , and D = 0, so the relation (4.7) simplifies to(

M B2

B>2 0

)−1
=

(
M−1 + M−1B2(−B>2 M−1B2)

−1B>2 M−1 −M−1B2(−B>2 M−1B2)
−1

−(−B>2 M−1B2)
−1B>2 M−1 (−B>2 M−1B2)

−1

)
=

(
M−1 −M−1B2(B

>
2 M−1B2)

−1B>2 M−1 M−1B2(B
>
2 M−1B2)

−1

(B>2 M−1B2)
−1B>2 M−1 −(B>2 M−1B2)

−1

)
.

A rather straightforward implementation of the algorithm computing the respective blocks of the
inverse separately was suggested, which also provided a noticeable speed-up in the calculation.
However, it still hit numerical issues caused by poor conditioning of some of the matrices
appearing in the calculation (namely of the lower-right block) in some cases, like with polynomial
regression of the tip contact area function 8. The key contribution to the high condition number
was identified to be the matrix B2 (provided by derivatives of the objective function along the
estimated parameters). The computation procedure has therefore been reworked in order to
avoid product expressions involving multiple instances of B2, greatly benefiting from using
singular value decomposition. This led to the final structure of the algorithm, which provides
both speed and numeric stability, and is described below.

4.3.1 System matrix inverse

Let Σ be a covariance matrix of the input data written in a block form as in equation (4.1) and
B1 = (B11 I), where B11 is a diagonal matrix of partial derivatives and I is identity matrix.
Then

M = B1ΣB>1 =
(
B11 I

)(ΣX ΣXY

Σ>XY ΣY

)(
B11

I

)
=

=
(
B11ΣXB11 + Σ>XYB11 + B11ΣXY + ΣY

)
.

As the matrix B11 is diagonal, given by a vector b1, we have an explicit formula for elements
of M:

Mij = b1ib1jΣXij + b1jΣXYji + b1iΣXYij + ΣYij .

Assume that Σ is symmetric positive definite; since B1 has full row rank, M = B1ΣB>1 is
also symmetric positive definite matrix [9]. Moreover M is usually well-conditioned, so we can
compute its Cholesky factorization M = LML>M . (This will also allow to employ triangular
substitutions instead of multiplicating by matrix inverses at some places.)

Denote by E the solution of LMX = B2. Then we have

E = L−1M B2 and E> = B>2 (L>M)−1.

Since M−1 = (L>M)−1L−1M , we obtain

M−1B2 = ((L>M)−1L−1M)(LME) = (L>M)−1E and B>2 M−1 = E>L−1M ,

hence (
M B2

B>2 0

)−1
=

(
(L>M)−1L−1M − (L>M)−1E(E>E)−1E>L−1M (L>M)−1E(E>E)−1

(E>E)−1E>L−1M −(E>E)−1

)
.

23

Due to the contribution of B2, matrix E is often ill-conditioned, and we should therefore avoid
inverting/factorizing matrices involving multiple products of E, where the condition number
grows with the power of E.

Our suggestion is to calculate the (thin) singular value decomposition of E = UESEV>E
with

• UE : orthogonal columns, dimension (n,m), U>EUE = In,

• SE : diagonal, dimension (m,m), and

• V>E : orthogonal, dimension (m,m),

assuming n is the number of data points, m is the number of parameters, n ≥ m.
We then have:

E>E = (VESEU>E)(UESEV>E) = VES2
EV>E ,

(E>E)−1 = VES−2E V>E ,

(E>E)−1E> = (VES−2E V>E)(VESEU>E) = VES−1E U>E ,

E(E>E)−1 = (UESEV>E)(VES−2E V>E) = UES−1E V>E ,

E(E>E)−1E> = (UES−1E V>E)(VESEU>E) = UEU>E .

Substituting back into the inverse formula, we obtain(
M B2

B>2 0

)−1
=

(
(L>M)−1L−1M − (L>M)−1(UEU>E)L−1M (L>M)−1(UES−1E V>E)

(VES−1E U>E)L−1M −(VES−2E V>E)

)
=

(
(L>M)−1L−1M − ((L>M)−1UE)(U>EL−1M) ((L>M)−1UE)(S−1E V>E)

(VES−1E)(U>EL−1M) −(VES−1E)(S−1E V>E)

)
.

Denote F = VES−1E , obtained by dividing columns of VE by the singular values, and G =
(L>M)−1UE , calculated by solving the triangular system L>MG = UE . Then we get(

M B2

B>2 0

)−1
=

(
(L>M)−1L−1M −GG> GF>

FG> −FF>

)
.

Procedure:

1. Calculate Cholesky decomposition of M = LML>M .

2. Calculate E by solving LME = B2 (use a triangular solve procedure if available3).

3. Calculate a thin SVD4 of E = UESEV>E .

4. Calculate F = VES−1E (divide columns of VE by respective singular values σi).

5. Calculate G by solving L>MG = UE (use a triangular transpose solve procedure if avail-
able5).

6. Calculate Q21 = FG>.

7. Calculate Q11 = (L>M)−1L−1M −GG> (use procedures for calculating symmetric positive
matrix inverse from a Cholesky factor6).

8. Q22 = FF>.
3LAPACK: dtrsm("L", "L", "N", "N", ...), R : forwardsolve
4LAPACK: dgesvd/dgesdd; if higher stability is desired, use more sophisticated procedures such as dgesvdq

or dgejsv (only in newer LAPACK; check version using ilaver), R : svd
5LAPACK: dtrsm("L", "L", "T", "N", ...), R : backsolve
6LAPACK: dpotri, R : chol2inv

24

4.4 R package

R is a free software environment for statistical computing and graphics. Due to the large number
of packages dedicated to various problems from different fields, it is used by a wide (not only)
statisticians community (for more details about R see [29]). Because of the wide usability of
the generalized form of the algorithm in metrology (especially in nanoindentation) and in other
applications, the package OEFPIL was developed for use in R environment. The package is
available on CRAN [37] and can be installed using install.packages("OEFPIL").

The main function named OEFPIL allows obtaining estimates of parameters of any (twice
continuously differentiable) nonlinear function together with their covariance matrix. The func-
tion uses the following arguments:

data an input data file,
form a symbolic description of a model,
start.val a list of initial values of estimating parameters,
CM an input covariance matrix of data,
max.iter maximum number of iterations,
see.iter.val a logical argument indicating if results in every step of iteration

should be displayed and saved,
save.file.name a name of the file for exporting results,
th a value indicating threshold necessary for the iteration stoppage,
signif.level a significance level for the confidence interval computing,
useNLS a logical argument indicating if pre-calculation of initial values

of parameters via nlsLM() is required.

Because of linearization of nonlinear function via Taylor series assumes initial values of parame-
ters close enough to the real values (see [18], VI.2), using useNLS = TRUE is highly recommended
to avoid non-convergence of algorithm or biased results.

The output of this function is an object of class ’OEFPIL’, which is a list containing esti-
mated values of parameters, the estimated covariance matrix, total number of iterations and
other components used for further calculations or graphical functions. Other details about
specification of arguments or output format are in the OEFPIL documentation (in R just write
?OEFPIL).

Basic generics functions in variation for ’OEFPIL’ objects are also part of the package.
This includes, for example, summary for displaying results, coef and vcov for extracting pa-
rameters and covariance matrix of the estimated function, respectively. Custom functions for
computing confidence intervals for parameters (confInt.OEFPIL) and confidence and prediction
pointwise bands for estimated function (confBands.OEFPIL) was implemented. Both of them
allow computing multiple confidence intervals at once by setting the vector of significance levels
for intervals through the argument signif.level. The confidence and prediction intervals are
computed under the normality assumption (see subsection 4.2.3).

The steam data from MASS library was chosen for basic illustration of functions from OEFPIL

package. The data frame contains 14 temperature (Temp) and pressure (Press) measurements
in a saturated steam driven experimental device. The diagonal input covariance matrix with
the same variance for x and y variable was used in the example (this corresponds to the setting
Di = 1 in [4], where the same data set is used).

Example use of OEFPIL () function for steam data

library(OEFPIL)

library(MASS)

defining initial values of parameters

startsteam <- list(b1 = 5, b2 = 8, b3 = 290)

25

creating covariance matrix

k <- nrow(steam)

CM <- diag(1, 2 * k, 2 * k)

EstFun <- OEFPIL(steam , Press ~ b1 * 10 ^ (b2 * Temp / (b3 + Temp)),

start.val = startsteam , CM = CM, useNLS = TRUE)

displaying results via summary function

summary(EstFun)

Summary of the result:

Press ~ b1 * 10^(b2 * Temp/(b3 + Temp))

Param Est Std Dev CI Bound 2.5 % CI Bound 97.5 %

b1 4.487870 0.4828491 3.541503 5.434237

b2 7.188155 0.5900662 6.031646 8.344663

b3 221.837783 31.6081218 159.887003 283.788564

Estimated covariance matrix:

b1 b2 b3

b1 0.2331432 0.2296195 13.43054

b2 0.2296195 0.3481782 18.46313

b3 13.4305405 18.4631318 999.07337

Number of iterations: 8

The summary contains basic results for the estimated parameters. There is a symbolic
description of the used model on the first line and two tables. In the first table are estimation of
parameters with their standard deviation (i.e. uncertainty) in Param Est and Std Dev column,
respectively. Other columns contain lower and upper bounds of the confidence interval for a
selected level of significance (if the signif.level argument is missing, the default value 0.05
is used). The second summary table contains the estimated covariance matrix for parameters.
The total number of iterations is displayed on the last line of the summary output.

In the steam data example, the estimated values of parameters b̂1 = 4.488, b̂2 = 7.188, b̂3 =
221.838 are in accordance with values of β̂1, β̂2, β̂3 from Example 2.3 in [4]. The function
ortresiduals.OEFPIL for computing orthogonal sum of squares (e.g. sum of the squared short-
est Euclidean distances between data points and the estimated function) is also available in the
package. This function allows individual choice of length of minimization interval via min.c

argument (too small value leads to narrow interval for minimization and misleading results). In
addition to the total orthogonal sum of squares (SSort), there are values of orthogonal residuals
(o.resid) and x coordinates of points, where the minimal distance is realized (x.ores), in the
output. The resulting orthogonal sum of squares for steam data example is 15.26281, again in
accordance with [4].

Example output of ortresiduals.OEFPIL () function for steam data

ortresiduals.OEFPIL(EstFun)

Argument ’min.c’ was not defined. Value 5.25 was used for the

calculation.

$x.ores
[1] -0.1041182 9.7131854 19.3427929 29.9771897 42.4031270

50.9102407 59.8553762 68.7104743 78.6414442 84.0272203

89.4955942 96.3598298 100.5014133 105.1662985

$o.resid
[1] 0.32998264 0.54728391 0.90021218 0.02586705 2.50727234 0.92927799

26

0.14610776 1.29625685 1.36208906 0.97453696 0.50506184 1.36096635

0.50174256 0.16638001

$SSort
[1] 15.26281

The package offers three functions described below to display the results from OEFPIL in
graphical form. Two of them are created using the ggplot2 library (for more details, see [33]
or [34]), allowing users to add other components into the graph or modify the output in the
usual way. For illustration of using graphical functions, the input covariance matrix of steam
data was modified to see the confidence bands better.
plot.OEFPIL - a basic plot of estimated function, original data points and confidence or pre-
diction pointwise bands of the resulting curve (the choice of interval type is possible through
interval argument). The function allows adding the same arguments as base plot function.

Example of using plot function on ’OEFPIL ’ object

new covariance matrix for steam data

CM2 <- diag(c(rep(12,n), rep(14,n)))

EstF2 <- OEFPIL(steam , Press ~ b1 * 10^(b2 *Temp/(b3 + Temp)),

start.val = startsteam , CM = CM2 , useNLS = TRUE)

to plot confidence interval set interval = "conf"

plot(EstF2 , signif.level = 0.05, interval = "conf")

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

Temp

P
re

ss

Figure 4.1: Example output of basic plot for an OEFPIL object – Data points with fitted curve
(black) and 95% pointwise confidence band (red).

curvplot.OEFPIL - a graph of estimated function including original data points, with optional
adding confidence pointwise bands of the resulting curve. The function allows to display more
confidence intervals with different significance levels in one plot (Figure 4.2).
paramplot.OEFPIL - a graph of the estimated values of the parameters with error bars (i.e.
± standard deviation). This function is a useful tool for comparing results from different
models (e.g. different degrees of polynomials used for estimation or different input uncertainties

27

0

500

1000

0 30 60 90
x

y

Pointwise CB

99% CB

95% CB

Estimation of a curve by Iterated Linearization

Figure 4.2: Example output of curvplot.OEFPIL function – Estimated curve (blue line) with
two different confidence bands.

of variables). Due to possible large differences in estimated parameters units, the windows for
the individual parameter estimation do not have the same scale. In the illustration figure 4.3
we compare the previous two models for steam data, where the difference is only in the input
covariance matrix. The graph shows that estimated values of parameters are in both cases
similar, but their uncertainty significantly differs.

paramplot.OEFPIL(EstFun , EstF2)

EstF2 is model with higher input variance of variables and

is assigned as model 2 in the figure

The special version of OEFPIL function adapted for using in nanoindentation for unloading
curve fitting was implemented in the package as NanoIndent.OEFPIL. The indentation depth h
and load F are considered as x and y variable, respectively. The form argument of this function
is predefined as power law function F = α(h − hp)m (according to equation 2.1). The initial
values of parameters m,α, hp are now optional argument, if missing, the relationships used for
computation are

m(0) = 1.5,

h(0)p = 0.9hmin,

α(0) =
Fmax

(hmax − h(0)p)m
(0)
,

where hmin is minimum of depth measured at unloading curve.

28

b1 b2 b3

100

150

200

250

300

5

6

7

8

9

3

4

5

6

model

1

2

Estimation of parameters with standard deviation

Figure 4.3: Example output of paramplot.OEFPIL function (two models with different input
uncertainties).

There are some other input arguments:

lcut, ucut allows to choose range of the unloading curve used for fitting,
unload.data a logical value indicating, if only unloading part of the curve is present

in data,
uh, uF standard deviation of depth and load (it is not necessary to set

whole covariance matrix)

The argument settings for fitting unloading curve using 20 − 98% its range with diagonal co-
variance matrix (with 0.5 uncertainty for depth and 0.001 for load), using data containing only
unloading part of the curve, shows following example:

Example use of NanoIndent.OEFPIL () function

silicaBerk data are example data implemented in the package

output.NI <- NanoIndent.OEFPIL(silicaBerk , unload.data = TRUE ,

ucut = 0.98, lcut = 0.2, uh = 0.5, uF = 0.001, signif.level = 0.05,

useNLS = TRUE)

display results via summary ()

summary(output.NI)

Summary of the result:

f ~ alpha * (h - hp)^m

Param Est Std Dev CI Bound 2.5 % CI Bound 97.5 %

alpha 0.00671548 0.0008994143 0.00495266 0.0084783

m 1.22203004 0.0319298976 1.15944859 1.2846115

hp 31.18649493 0.6092014305 29.99248207 32.3805078

Estimated covariance matrix:

alpha m hp

alpha 8.089462e-07 -2.869859e-05 0.0005422115

m -2.869859e-05 1.019518e-03 -0.0191398285

29

hp 5.422115e-04 -1.913983e-02 0.3711263829

Number of iterations: 6

The summary output has the same structure as for OEFPIL function. In this case, resulting
estimation of parameters is α̂ = 0.0067, m̂ = 1.22, ĥp = 31.18 obtained in 6 iteration steps.

For more examples and details about functions, see the package documentation [37].

4.5 C library

After successful validation of algorithm performance on indentation unloading curves, the im-
plementation of the general algorithm for arbitrary functions in C language was sterted. It was
created as a separate project, intended for eventual inclusion in Niget software when ready.

For most vector and matrix calculations, the de facto standard interfaces for calculations in
linear algebra have been employed: BLAS (Basic Linear Algebra Subprograms, low-level opera-
tions, http://www.netlib.org/blas/), and LAPACK (Linear Algebra PACKage, higher-level
routines, http://www.netlib.org/lapack/, see also [1]). BLAS and LAPACK provide spe-
cialized routines (e.g. for symmetric or triangular matrices) that allow efficient implementation
of the algorithm.

For convenient interoperation with BLAS and LAPACK routines, matrices are represented
as 1-dimensional arrays in column-major order. That is, the entry in the i-th row and j-th
column of a matrix A of m rows can be accessed as A[j*m + i].

The library provides a single main function:

void oefpil(void *fcn, void *data,

int np, double *p, double *pcov,

int n, const double *x, const double *y, const double *xycov,

int maxit, double tol, int printlevel, FILE *rptfile,

int *info, int *niter)

}

with its arguments given as follows:

void *fcn function that evaluates function values and derivatives of the fitted
function (see below)

void *data pointer to optional data passed to fcn

int np number of function parameters
double *p dimension np; on input: starting parameter values; on output: es-

timated parameter values
double *pcov dimension (np)2; on output: covariance matrix of estimated param-

eters
int n number of points
const double *x dimension n; x-values of the points
const double *y dimension n; y-values of the points
const double *xycov dimension (2n)2; covariance matrix of the input values
double tol relative tolerance for convergence criterion
int printlevel level of verbosity; 0: no output, 1: basic iteration progress, 2: iter-

ation progress including parametr covariance, 3: debug output
FILE *rptfile file where output should be sent (e.g. stdout); can be NULL (no

output)
int *info

int *niter

The evaluation function fcn is then assumed in the following form:

30

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

void fcn(void *data, int n, int np, const double *x, const double *beta,

double *wf, double *wfx, double *wfp)

with the arguments:

void *data void pointer to optional data passed to fcn

int n number of points
int np number of function parameters
const double *x dimension n; x-values of the points
const double *p dimension np; values of the parameters
double *wf dimension n; on output: function values in the points
double *wfx dimension n; on output: derivatives of the function along x in the points
double *wfp dimension n · np; on output: derivatives of the function along the pa-

rameters

Please note that the function signatures may change in future versions with future develop-
ment.

The library uses CMake software collection (https://cmake.org) for building, which also
simplifies its integration in other software.

Since the library has developed into an actually usable software, it has been decided to keep
it as a standalone project, freely available at https://gitlab.com/cmi6014/oefpil/ under
MIT license. Compared to the R package, which aims for ease of use and availability for the
wide community of R users, the C library can provide greater computation performance and is
available to software developers for inclusion in their software.

4.6 Validation of algorithm performance

In this section we demonstrate usability and performance of OEFPIL on several examples.

4.6.1 NIST reference data for nonlinear regression

At https://www.itl.nist.gov/div898/strd/nls/nls main.shtml, NIST has published
a collection of datasets as well as reference values used for evaluating software for calculating
nonlinear regression. Even when the formulation of the problem to be solved by OEFPIL is
different, so the results are not fully comparable with the reference values, these model problems
can be used to demonstrate OEFPIL’s ability to reach a solution for different combinations of
data and nonlinear models. In this case, a diagonal covariance matrix (with different values
σ2x and σ2y for particular datasets) was used for OEFPIL. For the majority of NIST datasets
the algortihm showed fast convergence to the values close to the reference (selected examples
are presented in following paragraphs). It shows usability of OEFPIL for a wide range of
nonlinear functions including exponentials, rationals or trigonometric functions. With changing
uncertainties σx and σy the estimated parameters often was the same, only the estimated
variance increased with the input uncertainties.

Misra1d data The phenomenon of increasing uncertainties of parameter estimates is illus-
trated by Figure 4.4, where data representing volume (y) and pressure (x) from NIST study
regarding dental research in monomolecular adsorption (misra1d) are presented. The relation-
ship between x and y is

y =
β1β2x

1 + β2x

and we consider diagonal covariance matrix with following uncertainties:

• model 1: σx = 0.1, σy = 0.2,

31

https://cmake.org
https://gitlab.com/cmi6014/oefpil/
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

b1 b2

0.000296

0.000300

0.000304

0.000308

0.000312

425

430

435

440

445

450

model

1

2

3

Estimation of parameters with standard deviation

Figure 4.4: Comparison of models with different input uncertainties for misra1d NIST data
(paramplot.OEFPIL output).

• model 2: σx = 0.01, σy = 0.2,

• model 3: σx = 0.001, σy = 0.1.

For all these models the estimation of parameters β1 and β2 is essentially the same (see Ta-
ble 4.1), but its uncertainty growths noticeably with uncertainties of input variables.

Table 4.1: Estimates of parameters with different models for Misra1d data.

Model 1 Model 2 Model 3 NIST certified value

β1 437.3748 437.3698 437.3697 437.36970754
β2 3.022691e-04 3.022732e-04 3.022732e-04 3.0227324449e-04

Chwirut2 data This data contains the result of a NIST study involving ultrasonic calibration.
The ultrasonic response y and the metal distance x are estimated by

y =
exp(−β1x)

(β2 + β3x)
.

By setting σx = 0.05 and σy = 0.5 the function estimated by OEFPIL differs in some areas
from NLS fit (see Figure 4.5) due to the use of other minimization criterion (as mentioned
in introduction of this chapter). Despite this differences, in most of the cases considered,
both methods give similar results and with decreasing input uncertainty the OEFPIL curve
approaches to the NLS curve.

Roszman1 data These data come from a NIST study involving quantum defects in iodine
atoms and are represented by number of quantum defects y and the excited energy state x. The

32

1 2 3 4 5 6

20
40

60
80

Metal distance

U
ltr

as
on

ic
 r

es
po

ns
e

OEFPIL
NLS

Figure 4.5: Fitting NIST Chwirut2 data using NLS (orange line) and OEFPIL with σx = 0.05
and σy = 0.5 (blue line).

relationship between these two variables is considered as

β1 − β2x−
arctan

(
β3

x−β4

)
π

.

As shown in Table 4.2 the OEFPIL parameter estimates (with input uncertainties σx = 5 and
σy = 0.005) are very close to the NLS estimates and the fitted function is essentially the same
(the curves for these two methods completely overlap in Figure 4.6).

Table 4.2: Estimates of parameters for Roszman data.

OEFPIL NIST certified value

β1 2.016828e-01 2.0196866396e-01
β2 -6.150549e-06 -6.1953516256e-06
β3 1.205522e+03 1.2044556708e+03
β4 -1.820444e+02 -1.8134269537e+02

4.6.2 Examples for INRIM WTLS/CCC software

In [22] and [21] several examples were presented that included data with nontrivial covariance
matrices.

33

−5000 −4000 −3000 −2000 −1000

0.
3

0.
4

0.
5

0.
6

N
um

be
r

of
 q

ua
nt

um
 d

ef
ec

ts

Excited energy state

Figure 4.6: Example of Roszman1 data fitting using σx = 5 and σy = 0.005 (the blue line
denotes OEFPIL as well as NLS fit).

Gas chromatometer calibration An example of gas chromatometer calibration in [22] in-
volved data with (a) diagonal covariance matrix containing only variance of variables on the
diagonal and (b) covariance matrix with correlations present between some of the y values, to be
fitted by a second-order polynomial ax2+bx+c. Tables 4.3 and 4.4 show a comparison between
the WTLS software and OEFPIL. Both the estimated parameters and their uncertainties and
covariances show a very good agreement in both cases. The convergence was achieved in 4 and
5 iteration steps, respectively (with preprocessing inital values using NLS method).

Table 4.3: Gas chromatometer calibration – comparison of reference values (no correlation
assumed), WTLS, and OEFPIL for diagonal covariance matrix.

ISO 6413 WTLS OEFPIL

a −4.1096× 10−13 −4.0373× 10−13 −4.0865× 10−13

b 2.4403× 10−5 2.4400× 10−5 2.4401× 10−5

c −1.4037× 10−4 −1.2895× 10−4 −1.3110× 10−4

ua 1.895 × 10−13 1.895 × 10−13 1.8951× 10−13

ub 5.901 × 10−8 5.901 × 10−8 5.9003× 10−8

uc 1.175 × 10−3 1.175 × 10−3 1.1748× 10−3

ua,b −1.020 × 10−20 −1.020 × 10−20 −1.0202× 10−20

ua,c 4.667 × 10−17 4.667 × 10−17 4.6692× 10−17

ub,c −2.057 × 10−11 −2.057 × 10−11 −2.0578× 10−11

Flow meter calibration In [21] an example of flow meter calibration was presented to demon-
strate improvements in the WTLS algorithm, with a number of correlations in the x data as
well as uncertainties in the y data. As shown Table 4.5, OEFPIL’s results are in a very good
match with the newer CCC software. Also in this case the OEPFIL converges within 5 iteration
steps (using NLS preprocessing of initial values).

34

Table 4.4: Gas chromatometer calibration – comparison of reference values (no correlation
assumed), WTLS, and OEFPIL for covariance matrix with correlations in y values.

ISO 6413 WTLS OEFPIL

a −4.1096× 10−13 −4.2247× 10−13 −4.2273× 10−13

b 2.4403× 10−5 2.4403× 10−5 2.4403× 10−5

c −1.4037× 10−4 −1.3538× 10−4 −1.3569× 10−4

ua 1.895 × 10−13 1.804 × 10−13 1.804 × 10−13

ub 5.901 × 10−8 5.644 × 10−8 5.643 × 10−8

uc 1.175 × 10−3 1.174 × 10−3 1.174 × 10−3

ua,b −1.020 × 10−20 −9.106 × 10−21 −9.104 × 10−21

ua,c 4.667 × 10−17 4.304 × 10−17 4.306 × 10−17

ub,c −2.057 × 10−11 −1.961 × 10−11 −1.962 × 10−11

Table 4.5: Flow meter calibration – comparison of CCC 1.3, CCC 2.0, and OEFPIL.

CCC 1.3 CCC 2.0 OEFPIL

a −13.950 485 4 −14.474 789 9 −14.477 072 0
b −9.989 667 8 −9.589 981 1 −9.588 479 8
c 4.874 164 9 4.795 202 7 4.794 964 4
d −0.196 308 5 −0.192 837 0 −0.192 827 0
e 0.001 566 5 0.001 526 9 0.001 526 8
ua 1.758 23 1.758 48 1.758 62
ub 1.238 67 1.238 77 1.238 73
uc 2.385 04 × 10−1 2.385 13 × 10−1 2.385 03 × 10−1

ud 1.106 79 × 10−2 1.106 82 × 10−2 1.106 79 × 10−2

ue 1.340 73 × 10−4 1.340 76 × 10−4 1.340 74 × 10−4

35

Chapter 5

Effective uncertainty propagation

It has long been known that the common “linear” uncertainty propagation, based on the Taylor
expansion of the investigated function, truncated as described e.g. in [12] does not produce
reliable results when applied to nonlinear functions. Due to the nonlinearity, the mean of the
function value no longer needs to equal the function evaluated at the input means (because it
is affected by the variance of the input), and the estimate of the output variance might also be
distorted.

An option to overcome the issues related to the linear uncertainty propagation is provided by
using a Monte Carlo approach (see e.g. [11]). However, Monte Carlo in a näıve implementation
may become very computationally demanding with increasing number of input variables.

Various approaches to mitigate deficiencies of the above methods have been investigated
for a long time. Here we present some of the methods that might be applied in our present
calculation setting.

5.1 Higher-order uncertainty propagation

An option to increase quality of estimates obtained by linear uncertainty propagation is to use
a greater part of the Taylor expansion of the function of interest, see e.g. [19] or [23]. This
approach involves using higher-order derivatives of the function as well as higher moments of
the distributions of the input quantities, depending on the specific setting. While the calculation
proceeds in a form of a closed-form expression, the maximum order of the expansion is limited
as the number of terms grows rapidly. Nevertheless, already second-order expansion can provide
a significant improvement in terms of both mean and (co)variance estimate.

5.1.1 SOERP

The paper [6] presented a computation procedure for uncertainty propagation through a function
of multiple variables when better information on the distribution of the (independent) input
quantities is available. As input, it requires:

• value of the function evaluated at the means of the input parameters,

• values of the first- and second-order (this giving the name to the procedure) derivatives
of the function evaluated at the means of the input parameters,

• higher moments (up to 8) of probability distributions of the input parameters.

As output it produces the first 4 moments (mean, variance, skewness, kurtosis) of the distribu-
tion of the result.

A computer program called SOERP (Second Order Error Propagation) was also presented
in this paper. The original FORTRAN code is not available, but the computation procedure

36

presented in the paper has been implemented in a Python module SOERP (https://github.c
om/tisimst/soerp). This module also provides additional functions for convenient use of the
SOERP method.

5.1.2 R Propagate

In order to utilize the power of SOERP, knowledge of higher moments of the input distributions
is required. It is quite common that the information on the input quantities is limited to basic
characteristics of the (multivariate) normal distribution – the mean and the (co)variance. This
case is treated by the propagate package for R (https://cran.r-project.org/web/packag
es/propagate/index.html). The function propagate allows calculating error propagation of
multiple normal inputs through a scalar function using three methods. Assume that f : Rn → R
is a function with the Jacobian J and Hessian H, x = (x1, . . . , xn) ∈ Rn with covariance matrix
Σ, and y = f(x):

1. first-order (linear) error propagation:

E[y] = f(x), (5.1)

σ2y = JΣxJ>, (5.2)

2. second-order error propagation:

E[y] = f(x) +
1

2
tr(HΣ), (5.3)

σ2y = JΣJ> +
1

2
tr(HΣHΣ), (5.4)

3. a Monte Carlo method.

As noted in the package documentation [31], its second-order propagation method yields ex-
actly the same results (estimates of mean and variance) as SOERP for Python. Our tests also
demonstrated that the results of the second-order propagation are also very close to the results
of Monte Carlo.

As can be verified when experimenting with the package, this form of second-order propa-
gation provides visible improvement over the standard first-order propagation while being quite
straightforward to implement and very fast to compute using just a few matrix operations.

5.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) [25] is an alternative to the more common Monte Carlo (MC)
method for simulations. In standard MC, for each input variable a set of N random values is
selected independently. In LHS, the range of the input distribution is split into intervals of equal
probability and one sample is chosen from each interval. This leads to lower sampling errors for
a given N compared to MC. The sampling procedure can be extended to higher-dimensional
data, with “Latin hypercube” standing for a generalization of the concept of Latin square1.

The first software implementation of LHS was written in late 1970s in FORTRAN 77, and has
been repeatedly improved and extended. This LHS software features a collection of functions for
generating univariate data with a number of distributions that are frequently encountered, and
allows to combine them in multivariate distributions based on prescribed correlations between
individual variables.

The current LHS code, written in Fortran 90 and distributed under LGPL version 2.1 license,
is presently included as a part of the Dakota software toolkit for optimization and uncertainty

1https://en.wikipedia.org/wiki/Latin square

37

https://github.com/tisimst/soerp
https://github.com/tisimst/soerp
https://cran.r-project.org/web/packages/propagate/index.html
https://cran.r-project.org/web/packages/propagate/index.html
https://en.wikipedia.org/wiki/Latin_square

quantification (https://dakota.sandia.gov/). It can be used as a standalone command-
line program commanded by a keyword file, or as a software library when calling its routines
from custom code. The user’s guide [32] also provides description of the method and further
references.

LHS was later extended to Orthogonal Sampling (based on so-called orthogonal arrays)
[28], which should allow even greater reduction in the number of samples to obtain a usable
representation of the required distribution, but no software implementation has been known to
the authors, which would provide comparable features to LHS.

38

https://dakota.sandia.gov/

Part IV

Application in instrumented
indentation

39

Chapter 6

Estimating parameters of the
unloading curve

In order to facilitate pre-fitting the unloading curve data with ordinary NLS using Levenberg-
Marquardt method as well as to use OEFPIL function fitting algorithm (main OEFPIL function
was described earlier), a new function fitting framework has been created in Niget software
to provide support for fitting algorithm selection. The new framework enables to include new
software components for function fitting:

• For ordinary NLS fitting, CMinpack (http://devernay.free.fr/hacks/cminpack, a
reimplementation in C of a proven and widely used FORTRAN MINPACK code) has been
included in Niget.

• The ODRPACK95 interface has been reworked to match the new framework.

• The OEFPIL C library has been included in Niget.

Moreover, the Oliver-Pharr analysis tool was modified appropriately to include selection of
the fitting algorithm. To ensure better convergence (and also aiming to achieve some calculation
speed-up by saving more computationally costly iterations of the advanced algorithms), both
ODR and OEFPIL fitting are internally preceded by a NLS fit. Screenshot of Niget software in
figure 6.1 shows new modified improved version of Oliver-Pharr analysis tool.

The fitting algorithm selection allows to easily compare results provided by ODR function
and OEFPIL function (assuming constant uncertainties for both h and F). Although based
on different concepts, in result both algorithms yield parameter estimates that to a surprising
accuracy See Chapter 9 for details.

Including contact point uncertainty In nanoindentation the contact point stands for the
point where the tip touches the sample. For the subsequent calculations, the load and depth data
are shifted so that the contact point corresponds to zero load and zero depth. The determination
of the contact point introduces not only a contribution to the uncertainty of the individual
datapoints, but also correlation among them. The covariance matrix for the depth values on
the unloading curve thus becomes Σh as follows

Σh =

uh2contact + uh2noise uh2contact . . . uh2contact
uh2contact uh2contact + uh2noise . . . uh2contact
...

...
. . .

...
uh2contact uh2contact . . . uh2contact + uh2noise

 , (6.1)

where uhnoise is the noise RMS (Root Mean Square) of the depth sensor signal and uhcontact
is the uncertainty of the depth of first contact. An analogous form can be derived for the

40

http://devernay.free.fr/hacks/cminpack

Figure 6.1: Screenshot of Niget software demonstrating new modified improved version of Oliver-
Pharr analysis tool and custom selection of algorithm.

covariance matrix of load values. The option to specify these uncertainties has been added to
Niget software, and the covariance matrices as presented above are taken into consideration
when using OEFPIL for the fitting of the unloading curve.

41

Chapter 7

Uncertainty propagation

7.1 Matrix-based uncertainty propagation

The basic functionality of the propagate function from the propagate package for R has been
implemented in a simple C library and included in Niget. It is also available separately at
https://gitlab.com/cmi6014/unc-propag. The present version of the library allows to
calculate first- and second-order error propagation for scalar functions, and, in addition, first-
order propagation for vector functions using a straightforward generalization of formulas (5.1)
and (5.2):

E[y] = f(x), (7.1)

Σy = JΣxJ>, (7.2)

where f : Rn → Rm is a function with the Jacobian J, x = (x1, . . . , xn) ∈ Rn with covariance
matrix Σx, and y = (y1, . . . , ym) = f(x).

The possibility to generalize the second-order propagation formulas (5.3) and (5.4) to vector
functions is being investigated.

The uncertainty estimation framework of the Oliver-Pharr tool was then rewritten to make
use of this library.

7.2 Monte Carlo simulations

The LHS library (see Section 5.2) for effective generation of pseudorandom data for simulations
has been included in Niget to extend the capabilities of Monte Carlo-based uncertainty esti-
mations. It is now possible to introduced correlations among the variables, and using LHS
also provides greater computation efficiency. The Monte Carlo uncertainty estimation of the
Oliver-Pharr tool has been adapted to use the library.

Pseudorandom data generation has been implemented in two variants. In both cases pseu-
dorandom values for the uncertainty of the maximum load and depth, Poisson’s ratios of the
sample and the tip, Young’s modulus of the tip, and coefficients of the fractional polynomial fit
of the area function are generated. In addition,

• the “short” version includes the generation of the power-law fit parameters α, m and hp,

• The “full” variant (an experimental feature at present, more time-consuming and demand-
ing more memory) generates also individual depth and load values on the fitted part of
the unloading curve, and calculates the fit for each pseudorandom data set, from which
the parameters α, m and hp are extracted.

42

https://gitlab.com/cmi6014/unc-propag

Chapter 8

Calibration of the contact area
function

In the task of calibration of the tip area function as described in Section 2.2, the problem
structure involves correlated data with uncertainties if a proper solution is desired. It is therefore
ideally suited for solving using OEFPIL.

As the computation schema presented in Figure 2.2 suggests, the structure of the complete
covariance matrix to be presented to OEFPIL is nontrivial (all the blocks are square, dimension
(M,M) where M is the number of data points):(

Σhc ΣhcAp

ΣhcAp ΣAp

)
. (8.1)

The blocks Σhc and ΣhcAp are diagonal (there is no correlation between hc,i and hc,j or
Ap,j for i 6= j), and ΣAp has all entries non-zero (all values of the contact area are correlated
through the properties of the indenter and the reference sample).

8.1 New software tools

Incorporating the contact area calibration functionality in the graphical user interface of Niget
would require substantial rewrite of the software due to the need of simultaneous evaluation of
multiple indentation curves. It was therefore decided to implement the tip area calibration as
a collection of command line tools. Two forms of the tip area function are presently supported:
polynomial and fractional polynomial, with an arbitrary number of terms.

For tool configuration and storing intermediate data, JSON (https://www.json.org/) file
format is employed, which is both human-writeable and easy to process in most programming
languages. An example JSON file containg the description of an area function is shown in
Listing 8.1. Loading the contact area functions as saved by the area calibration tool has been
implemented in present version of Niget.

Listing 8.1: Example JSON area file describing a polynomial function with 3 terms.

{

"name": "Contact area function test",

"indenter": "Berkovich BV123",

"sample": "Fused Silica",

"date": "2021 -03 -27 22:11",

"fcntype": "poly0",

"nterms": 3,

"params": [

347.65997951992944 ,

26.675159492250888 ,

43

https://www.json.org/

0.0039982258752850955

],

"paramcov": [

328.19304797236151 ,

-5.1391505746785455 ,

0.019809014661914454 ,

-5.1391505746785455 ,

0.11664499161235975 ,

-0.0003836013572439823 ,

0.019809014661914454 ,

-0.0003836013572439823 ,

1.5650449109512977e-6

]

}

The new software tools for contact area function calibration essentially capture all the techniques
investigated in this project:

1. fitting unloading curves with errors in both variables, including covariance of parameter
estimates,

2. propagation of uncertainty from multiple sources for producing depth-Area data together
with covariance information, and

3. fitting the area function through correlated data (and calculating the uncertainty of the
area function evaluation).

The new tools are the following:

area-preprocess Takes a list of files saved from Niget (having the unloading section of the
data defined), and based on the fit settings for the Oliver-Pharr evaluation tool, estimates
the power-law parameters for each curve. The estimates for hmax and Fmax are presently
based on user’s experience, and should be provided in a configuration file.

Example use:
area-preprocess list.txt op-cfg.json area-prep-cfg.json prep.json

area-calibrate Takes preprocessed data from area-calibrate, information on the tip and refer-
ence sample, and calculates the area function in the desired form (polynomial or fractional
polynomial, any number of terms). The complete structure of the covariance matrix as
presented in Equation (8.1) is used in the calculation. The C library for uncertainty prop-
agation presented in the previous section is used to calculate the entries of the covariance
matrix.

Example use:
area-calibrate prep.json tip.json sample.json area-cal-cfg.json area.json

Apart from the area function description in area.json, additional files containing the depth-
area data as well as their covariance matrix (each block separately) are saved in the
working directory for further analysis using external tools.

area-eval A simple tool to evaluate the provided tip area function at a specified hc with given
uncertainty. This tool also uses the C library for uncertainty propagation.

Example use:
area-eval area.json 100.0 0.5

Example configuration files for all the tools above are distributed with Niget.

44

50 100 150 200

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Contact depth (nm), clustered data

C
on

ta
ct

 a
re

a
(n

m
2)

50 100 150 200

0
20

00
00

60
00

00
10

00
00

0

Contact depth (nm), spread data

C
on

ta
ct

 a
re

a
(n

m
2)

Figure 8.1: Example of clustered (blue points) and spread (orange pints) data set.

8.2 Evaluation of different area function forms

The new methods and tools developed in this project can provide a better insight in choosing
a suitable form of the tip area function. Two basic forms of the area function have been
considered:

• “fractional polynomial“ (FP)

Ap(h) = a1h
2 + a2h+ a3h

1
2 + a4h

1
4 + . . . anh

1
2n−2 , n ∈ N,

• polynomial (P)
Ap(h) = a1h+ a2h

2 + · · ·+ anh
n, n ∈ N.

Functions with the number of additive terms n from 3 up to 6 were calculated for several
collections of area calibration data. There were two principal types of the calibration data:

• “clustered“: 12 groups of 5 indents were measured at different maximum loads (with
individual contact depths and areas slightly varying in each group due to measurement
and sample imperfections),

• “spread”: each indent was measured using a different maximum load, providing (hc, Ap)
pairs covering (not necessarily uniformly) the whole calibration interval.

These two types of data are demonstrated in Figure 8.1.

8.2.1 Comparison of evaluated functions at different contact depths

The different forms of the tip area function were first evaluated on a testing set of clustered and
spread data, and the values and uncertainties of the functions evaluated at contact depths of
20, 50, 100, and 200 nm were compared. Figures 8.2 and 8.3 show their behavior on clustered
data, and figures 8.4 and 8.5 show their behavior on spread data. The numbers in the function
form label stand for the number of additive terms in the respective form.

Some findings can be drawn from this comparison:

1. All the function forms yield comparable uncertainties of the evaluated area at all given
contact depths (except of FP6 for small depths, where some data files showed an increase
of uncertainty – see Figure 8.4).

45

10
00

0
10

50
0

11
00

0
11

50
0

12
00

0

Estimates for different area function forms at a contact depth of 20 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

63
00

0
64

00
0

65
00

0
66

00
0

Estimates for different area function forms at a contact depth of 50 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.2: Estimates of area function using different polynomials (P) and fractional polynomials
(FP) with 95% CI at small contact depths, clustered data.

46

23
60

00
24

00
00

24
40

00

Estimates for different area function forms at a contact depth of 100 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

88
00

00
89

00
00

90
00

00

Estimates for different area function forms at a contact depth of 200 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.3: Estimates of area function using different polynomials (P) and fractional polynomials
(FP) with 95% CI at higher contact depths, clustered data.

47

15
00

0
16

00
0

17
00

0
18

00
0

Estimates for different area function forms at a contact depth of 20 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

83
00

0
84

00
0

85
00

0
86

00
0

Estimates for different area function forms at a contact depth of 50 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.4: Estimates of area function using different polynomials (P) and fractional polynomials
(FP) with 95% CI at small contact depths, spread data.

48

30
20

00
30

60
00

31
00

00

Estimates for different area function forms at a contact depth of 100 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

11
55

00
0

11
65

00
0

11
75

00
0

11
85

00
0

Estimates for different area function forms at a contact depth of 200 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.5: Estimates of area function using different polynomials (P) and fractional polynomials
(FP) with 95% CI at higher contact depths, spread data.

49

2. With fractional polynomials, 3 terms are often not sufficient, and the function tends to
deviate most from the other forms.

3. At low contact depth, fractional polynomials of higher term number tend to depart quickly
from reasonable values. Figure 8.6 shows a comparison between polynomials and fractional
polynomials with 4 or 5 terms. Polynomials do not show this behaviour as they approach
zero due to the absence of a constant term. For measurements at the lowest depths, the
polynomial form of the area function should therefore be preferred.

Care should also be taken, when using polynomial function forms with a higher number of
terms, to check that overfitting does not occur and the calculated function is convex.

50

0 10 20 30 40 50

0
10

00
0

30
00

0
50

00
0

P4
FP4

Contact depth (nm)

C
on

ta
ct

 a
re

a
(n

m
2)

0 10 20 30 40 50

2e
+

04
6e

+
04

1e
+

05

P5
FP5

Contact depth (nm)

C
on

ta
ct

 a
re

a
(n

m
2)

Figure 8.6: Estimation of contact area function at small contact depths using a polynomial
(green line) and fractional polynomial (blue line) with 4 terms (top) and 5 terms (bottom),
clustered data.

51

0 20 40 60 80 100

29
30

00
29

50
00

29
70

00
29

90
00

C
on

ta
ct

 a
re

a
(n

m
2)

Sample
P5 at a contact depth 100 nm

0 20 40 60 80 100

29
30

00
29

50
00

29
70

00
29

90
00

C
on

ta
ct

 a
re

a
(n

m
2)

Sample
FP5 at a contact depth 100 nm

Figure 8.7: Estimations of contact area at a contact depth 100 nm using resampling procedure
for polynomial and fractional polynomial with 5 terms, spread data. The red line indicates the
whole set estimate with 95% confidence interval (blue lines).

8.2.2 The behaviour of different area function forms

The method’s robustness was tested using the following resampling procedure: Random 5 pairs
of contact depth and the projected area was excluded from the dataset, and the estimation of the
contact area function from this truncated data was computed using OEFPIL. This procedure
was repeated 100 times, and the individual estimates were compared with the estimate obtained
using the complete dataset. For clustered data, to avoid the exclusion of one complete cluster,
the procedure was modified. First, five clusters were randomly selected, and then one random
value from each cluster was removed from the dataset. The results are displayed in Figures 8.7
and 8.8. For both considered types of data, the behaviour of various (fractional) polynomials
differs with concrete dataset and selected contact depth, but deviations between particular
estimates are, with rare exceptions, within the confidence interval calculated from the complete
dataset. The results also confirmed greater deviations between different contact area forms in
lower depths.

Note: Although the estimate for individual depths often varies, the scale of the y-axis is
so large that these changes do not greatly affect the final shape of the curve (except for small
depths).

A difference between P and FP can also be observed in their computational properties: fitting
the area function with OEFPIL generally requires more iterations when using FP compared to
P form of the area function (the exact numbers depend on the number of terms and required
convergence threshold).

52

0 20 40 60 80 100

34
00

0
35

00
0

36
00

0
C

on
ta

ct
 a

re
a

(n
m

2)

Sample
P5 at a contact depth 30 nm

0 20 40 60 80 100

34
00

0
35

00
0

36
00

0
C

on
ta

ct
 a

re
a

(n
m

2)

Sample
FP5 at a contact depth 30 nm

Figure 8.8: Estimations of contact area at a contact depth 30 nm using resampling procedure
for polynomial and fractional polynomial with 5 terms, spread data. The red line indicates the
whole set estimate with 95% confidence interval (blue lines).

53

8.2.3 Influence of correlations present in area calibration data

One of the key achievements of this project is the implementation of calculation procedures that
enable to take account of the correlations between hc and Ap for each point as well as for Ap

between different points. The effect of neglecting all the correlations involved is demonstrated
on an instance of clustered data (Tables 8.1 and 8.2, visualization in Figures 8.10 and 8.12) and
spread data (Tables 8.3 and 8.4; also visualized in Figures 8.9 and 8.11).

While the differences in the evaluated area function values can be considered insignificant,
the effect of the neglection on the calculated uncertainty is notable: from overestimating by
approx. 10–40 % at lower contact depths to underestimating by more than 25 % (less precise
instrument, clustered data) or 70 % (more precise instrument, spread data) at higher contact
depths.

Table 8.1: Clustered data, contact depths 20 and 50 nm.

Ap σ Ap,diag σdiag

hc = 20 nm P3 9547.59 235.88 9765.67 320.53
P4 9330.18 267.06 9621.55 374.22
P5 9187.04 282.69 9429.08 402.73
P6 9143.64 298.17 9365.26 418.46

FP3 9225.96 275.91 9455.13 390.05
FP4 9235.06 301.62 9429.25 407.99
FP5 9421.42 366.35 9525.17 463.75
FP6 8395.27 399.47 8873.31 538.27

hc = 50 nm P3 58018.58 469.44 58281.04 492.85
P4 58480.99 538.76 58525.15 592.91
P5 59001.98 591.76 59006.75 673.09
P6 59189.14 598.71 59116.66 684.23

FP3 58758.05 521.29 58805.36 566.06
FP4 59035.81 548.95 58962.49 602.26
FP5 58743.45 599.00 58797.46 685.97
FP6 59215.06 594.90 59082.76 678.75

54

10
40

00
0

10
50

00
0

10
60

00
0

Estimates for different area function forms at a contact depth of 200 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.9: Comparing contact area function fitting without (blue points) and with (red points)
correlations and 95% confidence intervals of estimate, spread data.

87
00

00
88

00
00

89
00

00

Estimates for different area function forms at a contact depth of 200 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.10: Comparing contact area function fitting without (blue points) and with (red points)
correlations and 95% confidence intervals of estimate, clustered data.

55

83
00

0
84

00
0

85
00

0
86

00
0

87
00

0

Estimates for different area function forms at a contact depth of 50 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.11: Comparing contact area function fitting without (blue points) and with (red points)
correlations and 95% confidence intervals of estimate, spread data.

57
00

0
58

00
0

59
00

0
60

00
0

Estimates for different area function forms at a contact depth of 50 nm

C
on

ta
ct

 a
re

a
(n

m
2)

P3 P4 P5 P6 FP3 FP4 FP5 FP6

Figure 8.12: Comparing contact area function fitting without (blue points) and with (red points)
correlations and 95% confidence intervals of estimate, clustered data.

56

Table 8.2: Clustered data, contact depths 100 and 200 nm.

Ap σ Ap,diag σdiag

hc = 100 nm P3 227394.78 1547.77 227398.30 1428.03
P4 227625.03 1557.20 227513.33 1440.09
P5 225432.34 1839.15 225442.02 1963.15
P6 224496.71 1907.03 224870.05 2067.57

FP3 227137.20 1412.58 227073.70 1138.29
FP4 225891.80 1612.50 226261.72 1542.24
FP5 226176.20 1637.94 226464.16 1606.81
FP6 224634.37 1687.86 225240.55 1697.74

hc = 200 nm P3 881661.89 5107.08 882741.56 3690.85
P4 882446.69 5159.31 883182.76 3774.09
P5 884304.01 5193.54 884989.79 3871.23
P6 880663.31 5532.21 882540.23 4707.31

FP3 882271.58 5034.93 883298.78 3443.88
FP4 883791.78 5133.19 884282.04 3683.45
FP5 883012.54 5156.76 883788.93 3793.09
FP6 882721.51 5132.01 883275.89 3754.02

Table 8.3: Spread data, contact depths 20 and 50 nm.

Ap σ Ap,diag σdiag

hc = 20 nm P3 18047.23 264.60 17974.50 299.71
P4 17329.03 358.42 17391.26 407.87
P5 17565.86 416.98 17526.75 471.71
P6 17245.71 458.10 17247.60 514.04

FP3 16148.59 420.54 16359.78 473.73
FP4 16810.95 414.99 16856.07 468.63
FP5 17490.12 538.85 17560.65 605.92
FP6 18374.70 696.33 18387.30 775.92

hc = 50 nm P3 84631.85 545.80 84632.17 408.52
P4 84645.63 547.03 84719.06 412.44
P5 84427.93 583.59 84575.75 488.12
P6 84928.30 633.82 85036.26 561.36

FP3 85958.48 528.68 86006.34 367.07
FP4 85081.91 589.38 85222.21 486.74
FP5 84921.51 591.04 84937.90 493.90
FP6 84129.61 656.99 84221.90 600.46

57

Table 8.4: Spread data, contact depths 100 and 200 nm.

Ap σ Ap,diag σdiag

hc = 100 nm P3 295190.70 1524.03 295551.77 523.72
P4 295998.29 1551.86 296181.30 602.96
P5 296162.60 1560.07 296322.25 654.27
P6 295520.45 1587.09 295715.55 745.63

FP3 295561.46 1531.38 295566.54 531.55
FP4 295903.98 1535.79 296021.07 560.51
FP5 295397.94 1540.38 295635.43 575.81
FP6 296216.59 1573.66 296419.28 687.46

hc = 200 nm P3 1050697.35 5337.18 1051010.87 1563.86
P4 1052142.27 5369.55 1052736.54 1785.43
P5 1052483.00 5382.75 1053051.73 1882.36
P6 1052744.54 5392.53 1053471.77 1931.93

FP3 1053965.85 5332.77 1055305.77 1365.70
FP4 1052656.53 5340.54 1053690.62 1505.04
FP5 1051172.61 5347.53 1051490.63 1635.10
FP6 1052166.49 5366.92 1052778.54 1759.37

58

Chapter 9

Example data evaluation

In this section we shall demonstrate the application of the newly developed methods on a real
measurement data set. A set of 49 measurements has been measured on a single sample, with
the indentations placed a 7× 7 square grid. These data have been evaluated by the procedures
developed within this project. A typical loading curve is shown in Figure 9.1. The input
uncertainties have been estimated as

u(hnoise) = 0.5 nm,
u(Fnoise) = 1 µN,
u(hcontact) = 1 nm,
u(Fcontact) = 2 µN,
u(Ei) = 3 GPa,
u(νi) = 0.01,
u(ν) = 0.05.

(9.1)

Different fitting methods Comparison is possible only with a diagonal covariance matrix
since correlations are not included in NLS nor ODR. Note, that no estimate for the uncertainty
of the parameters is available for NLS. While the estimates of the parameters differ only very
slightly between ODR and OEFPIL it can be stated that the uncertainties are significantly
underestimated by ODR. On the other hand, OEFPIL is more sensitive to the data and fails
also in cases where ODR succeeds. An example of the resulting values from the different methods
is in tabel 9.1.

Table 9.1: Comparison of the resulting parameter estimates using different fitting methods. In
order to show the agreement between ODR and OEFPIL results we list the values with more
digits than necessary.

NLS ODR OEFPIL

α 0.000972785 0.000793976 ± 0.000138218 0.000793983 ± 0.000462999
hp 128.495 127.942 ± 0.481088 127.942 ± 1.61239
m 1.99512 2.04405 ± 0.0416521 2.04404 ± 0.139599

Covariance matrix including contact point uncertainty The inclusion of the contact
uncertainties uhcontact and uFcontact into the covariance matrix leads to a very small change in the
estimate of the parameters α, m and hp, at least for reasonable values of contact uncertainties,
see Table 9.2.

59

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

lo
ad

/m
N

depth/nm

Figure 9.1: Typical loading curve for indentation measurement.

Table 9.2: Comparison of the resulting parameter estimates using either a full covariance matrix
or only its diagonal form. For clarity we list the results with more digits.

Full covariance matrix Diagonal covariance matrix

α/(mN nm−m) 0.000794091 ± 0.000464219 0.000793983 ± 0.000462999
hp/nm 127.943 ± 1.908 127.942 ± 1.612
m 2.04401 ± 0.13988 2.04404 ± 0.13960

Comparison of Monte Carlo and LHS As mentioned previously, LHS has been imple-
mented in Niget in two forms, whether or not the the parameters of the power-law fit α, hp
and m are generated as pseudorandom numbers or whether they are found from individual fits
of randomly generated unloading curves. Two drawbacks have been found for the full version
of LHS. Firstly, in many cases the covariance matrix of all generated variables is not positive
definite. This may indicate an inadequate estimate of our uncertainties involved. Secondly, it
requires too much memory when data for hundreds on random variables have to be generated.

A sample output is shown in Figure 9.2. The approximate computation times on a desktop
computers were 2 min 54 s (MC), 3 min 55 s (LHS full full covariance matrix), 2 min 15 s (LHS full
diagonal covariance matrix) and 0.2 s (LHS short). Here the number of samples 1000 is clearly
insufficient. Generation of larger samples will require a reorganization of the code. However,
it seems that the multivariate normal distribution for the fitting parameters is an acceptable
approximation for the experimental distribution as obtained from Monte Carlo. The fact that
the performance of LHS for multivariate distributions need not be superior to Monte Carlo has
been explored in literature, e.g. [24]. Nevertheless, the LHS library remains a very useful tool
for generating data with complicated correlation structure or distribution functions.

Uncertainty budgets The uncertainty budget in Table 9.3 shows the contributions of various
sources of uncertainty, with the total estimates HIT = (1955±31) MPa, EIT = (75.2±3.1) GPa
and Er = (77.09± 1.70) GPa.

It can be noted that the relevance of the various sources differs for indentation hardness,
indentation modulus and reduced contact modulus. First, the large contribution coming from
the uncertainty in Poisson’s ratio of the sample should be noted. This value is rarely available

60

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n/

 a
.u

.

m

MC
LHS SHORT

LHS FULL diagcov
LHS FULL fullcov

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 120 122 124 126 128 130 132 134 136

pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n/

 a
.u

.

hp

MC
LHS SHORT

LHS FULL diagcov
LHS FULL fullcov

Figure 9.2: The probability density functions for the fitting parameters m and hp for different
evaluation methods.

Table 9.3: Uncertainty budget.

Source u(HIT)/MPa u(EIT)/GPa u(Er)/GPa

Uncertainty of contact 24.9 0.514 0.491
Noise 14.7 1.69 1.62
AF coefficients 11.1 0.229 0.219
ν 0 2.48 0
νi 0 0.0076 0
Ei 0 0.0143 0
Total 31.0 3.05 1.703

and is usually taken from literature, without any estimates of its uncertainty. The reduced
contact modulus does not suffer from this disadvantage but cannot be compared with results
from literature obtained by other methods. Secondly, the indentation hardness is more sensitive
to the uncertainty of the contact. This is because it depends on the maximum load whereas the
moduli depend on the slope which is not directly affected by the choice of contact.

Repeated measurement In nanoindentation, the common practice is to estimate the uncer-
tainties of hardness and modulus as the standard deviation of the mean. This is in agreement
with standard [12]. Uncertainties of a single indentation are not taken into account. This ap-
proach leads to the values HIT = (2214.59±25.657) MPa, and EIT = (78.5051±0.629126) GPa.
These values are smaller than those obtained by a rigorous analysis of each indentation itself,
manifesting thus the limitations of this approach. In Figures 9.4 and 9.3 we can see the fairly
large variability of the data. Especially in case of the hardness, values given by different inden-
tations do not agree even within uncertainties.

61

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 0 5 10 15 20 25 30 35 40 45 50

in
de

nt
at

io
n

ha
rd

ne
ss

/G
P

a

Indentation

Figure 9.3: Indentation hardness for individual indentations.

 65

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30 35 40 45 50

in
de

nt
at

io
n

m
od

ul
us

/G
P

a

Indentation

Figure 9.4: Indentation modulus for individual indentations.

62

Conclusion

All the goals set up in the project proposal have been achieved, and declared outcomes of the
project have been produced:

TJ02000203-V1 User software for evaluating data from instrumented indentation
measurements The newly developed method for nonlinear data regression, improved meth-
ods for uncertainty propagation, and tools for tip area function calibration have been included in
Niget and released in version 0.5.9 of the software, available at http://nanometrologie/niget.

TJ02000203-V2 Research report describing the methods developed and the im-
plementation of them This report. The general mathematical and statistical methods are
dealt with in Part III. Part IV then describes the application of these methods in evaluation
of measurements by instrumented indentation technique, and presents novel results that have
been obtained using the methods and newly developed tools.

TJ02000203-V3 Software for data evaluation using nonlinear orthogonal regression
in R software A new method for nonlinear regression, which allows to account for an ar-
bitrary covariance matrix for the input data, has been developed, implemented, and tested.
The R package OEFPIL has been written, reviewed, and is freely available at https://cran.r-
project.org/package=OEFPIL.

C library for nonlinear regression An additional outcome has been produced: a free
software library in C for function fitting, implementing the OEFPIL method developed in
TJ02000203-V3, has been created, and is freely available at https://gitlab.com/cmi60

14/oefpil.

Using the newly developed methods and software tools, various data sets from instrumented
indentation measurements have been evaluated, which has provided a novel insight to the mea-
sured data. Parts of the standardized data evaluation procedures related to function fitting and
uncertainty estimation have now gained a more solid mathematical background.

The applicability of the general mathematical and statistical methods developed and explored
in this project is obviously not limited to the standardized instrumented indentation procedure
for elasticity modulus and hardness determination, on which base they were developed in this
project. Presented results and freely available tools developed for indentation data processing
aim to impact fundamental metrology, related material research, and operators in industry.
Moreover, the nonlinear regression tools developed within this project can be used separately
also in other areas where similar complex measurement data evaluation is needed, such as
metrology of chemical or electrical quantities, or in the areas of research and data processing
outside the metrology community.

63

http://nanometrologie/niget
https://cran.r-project.org/package=OEFPIL
https://cran.r-project.org/package=OEFPIL
https://gitlab.com/cmi6014/oefpil
https://gitlab.com/cmi6014/oefpil

The mathematical methods themselves also provide a field for further research and applica-
tions, like investigation of nonlinear regression for non-normally distributed data, or higher-order
uncertainty propagation of correlated variables in the multivariate setting.

The software tools developed in this project are also planned to be further developed, be
extended with new features, and reflect feedback from the users.

64

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide,
third edition. Society for Industrial and Applied Mathematics, 1999.

[2] D. S. Bernstein. Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas –
Revised and Expanded Edition. Princeton University Press, 2018.

[3] P. T. Boggs, R. H. Byrd, and R. B. Schnabel. A stable and efficient algorithm for nonlinear
orthogonal distance regression. SIAM Journal on Scientific and Statistical Computing,
8(6):1052–1078, 1987. doi:10.1137/0908085.

[4] P. T. Boggs, J. R. Donaldson, R. H. Byrd, and R. B. Schnabel. Algorithm 676: ODRPACK:
Software for weighted orthogonal distance regression. ACM Transactions on Mathematical
Software, 15(4):348–364, 1989. doi:10.1145/76909.76913.

[5] A. Charvátová Cambell, P. Grolich, and R. Šlesinger. Niget: Nanoindentation general
evaluation tool. SoftwareX, 9:248–254, 2019. doi:10.1016/j.softx.2019.03.001.

[6] N. D. Cox. Tolerance analysis by computer. Journal of Quality Technology, 11(2):80–87,
1979. doi:10.1080/00224065.1979.11980884.

[7] A. C. Fischer-Cripps. Nanoindentation. Mechanical Engineering Series. Springer, 2011.

[8] U. H. G. Aldrich-Smith, N. M. Jennett. Direct measurement of nanoindentation area
function by metrological AFM. Z. Metallkd., 96:1267–1271, 2005.

[9] G. H. Golub and C. F. Van Loan. Matrix Computations, Fourth edition. Johns Hopkins
Studies in the Mathematical Sciences. The Johns Hopkins University Press, 2012.

[10] J. L. Hay and G. M. Pharr. Mechanical Testing and Evaluation, volume 8, chapter Instru-
mented Indentation Testing. ASM International, 2000. doi:10.31399/asm.hb.v08.a000

3273.

[11] ISO/IEC. Propagation of distributions using a Monte Carlo method. ISO/IEC 98–
3:2008/Suppl 1:2008, International Organization for Standardization, Geneva, Switzerland,
2008.

[12] ISO/IEC. Uncertainty of measurement – part 3: Guide to the expression of uncertainty in
measurement (GUM:1995). ISO/IEC 98–3:2008, International Organization for Standard-
ization, Geneva, Switzerland, 2008.

[13] ISO/IEC. 14577-1:2015 Metallic materials – Instrumented indentation test for hardness
and materials parameters – Part 1: Test method. ISO/IEC, International Organization
for Standardization, Geneva, Switzerland, 2015.

65

https://doi.org/10.1137/0908085
https://doi.org/10.1145/76909.76913
https://doi.org/10.1016/j.softx.2019.03.001
https://doi.org/10.1080/00224065.1979.11980884
https://doi.org/10.31399/asm.hb.v08.a0003273
https://doi.org/10.31399/asm.hb.v08.a0003273

[14] ISO/IEC. 14577-2:2015 Metallic materials – Instrumented indentation test for hardness and
materials parameters – Part 2: Verification and calibration of testing machines. ISO/IEC,
International Organization for Standardization, Geneva, Switzerland, 2015.

[15] S. Kossman, T. Coorevits, A. Iost, and D. Chicot. A new approach of the oliver and
pharr model to fit the unloading curve from instrumented indentation testing. Journal of
Materials Research, 32:2230–2240, 2017.

[16] M. Krystek and M. Anton. A least-squares algorithm for fitting data points with mutually
correlated coordinates to a straight line. Measurement science and technology, 22(3):035101,
2011.

[17] L. Kubáček. Foundations of Estimation Theory, volume 9 of Fundamental Studies in
Engineering. Elsevier, 1988.

[18] L. Kubáček and L. Kubáčková. Statistika a metrologie. Palacký University Olomouc, 2000.

[19] L. Kubáček and E. Tesař́ıková. Linear error propagation law and nonlinear functions.
Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica,
49(2):69–82, 2010.

[20] R. Köning, G. Wimmer, and V. Witkovský. Ellipse fitting by nonlinear constraints to
demodulate quadrature homodyne interferometer signals and to determine the statistical
uncertainty of the interferometric phase. Measurement Science and Technology, 25(11),
2014. doi:10.1088/0957-0233/25/11/115001.

[21] M. Lecuna, F. Pennecchi, A. Malengo, and P. G. Spazzini. Calibration curve computing
(CCC) software v2.0: a new release of the INRIM regression tool. Measurement Science
and Technology, 31, 2020. doi:10.1088/1361-6501/ab7d6e.

[22] A. Malengo and F. Pennecchi. A weighted total least-squares algorithm for any fitting
model with correlated variables. Metrologia, 50:654–662, 2013. doi:10.1088/0026-

1394/50/6/654.

[23] G. Mana and F. Pennecchi. Uncertainty propagation in non-linear measurement equations.
Metrologia, 44:246–251, 2007. doi:10.1088/0026-1394/44/3/012.

[24] R. Manteufel. Evaluating the convergence of latin hypercube sampling. In 41st Structures,
Structural Dynamics, and Materials Conference and Exhibit, page 1636, 2000.

[25] M. D. McKay, W. J. Conover, and R. J. Beckman. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Tech-
nometrics, 21(2):239–245, 1979.

[26] D. Nečas and P. Klapetek. Gwyddion: an open-source software for SPM data analysis.
Central European Journal of Physics, 10(1):181–188, 2012. doi:10.2478/s11534-011-

0096-2.

[27] W. C. Oliver and G. M. Pharr. An improved technique for determining hardness and
elastic-modulus using load and displacement sensing indentation experiments. J. Mater.
Res., 7:1564–1583, 1992.

[28] A. B. Owen. Orthogonal arrays for computer experiments, integration and visualization.
Statistica Sinica, 2(2):439–452, 1992. URL: http://www.jstor.org/stable/24304869.

[29] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2020. URL: https://www.R-project.org/.

66

https://doi.org/10.1088/0957-0233/25/11/115001
https://doi.org/10.1088/1361-6501/ab7d6e
https://doi.org/10.1088/0026-1394/50/6/654
https://doi.org/10.1088/0026-1394/50/6/654
https://doi.org/10.1088/0026-1394/44/3/012
https://doi.org/10.2478/s11534-011-0096-2
https://doi.org/10.2478/s11534-011-0096-2
http://www.jstor.org/stable/24304869
https://www.R-project.org/

[30] A.-N. Spiess. onls: Orthogonal Nonlinear Least-Squares Regression, 2015. R package
version 0.1-1. URL: https://CRAN.R-project.org/package=onls.

[31] A.-N. Spiess. propagate: Propagation of Uncertainty, 2018. R package version 1.0-6. URL:
https://CRAN.R-project.org/package=propagate.

[32] L. P. Swiler and G. D. Wyss. A user’s guide to Sandia’s Latin Hypercube Sampling Software:
LHS UNIX library/standalone version, 7 2004. URL: https://www.osti.gov/biblio/91
9175, doi:10.2172/919175.

[33] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016. URL: https://ggplot2.tidyverse.org.

[34] H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data. O’Reilly Media, Inc., 2017.

[35] V. Witkovský and G. Wimmer. Generalized polynomial comparative calibration: Param-
eter estimation and applications. In S. Y. Yurish, editor, Advances in Measurements and
Instrumentation: Reviews, volume 1, pages 15–52. International Frequency Sensor Associ-
ation Publishing, 2019.

[36] J. W. Zwolak, P. T. Boggs, and L. T. Watson. Algorithm 869: ODRPACK95: A weighted
orthogonal distance regression code with bound constraints. ACM Trans. Math. Softw.,
33(4), Aug. 2007. doi:10.1145/1268776.1268782.

[37] S. Zámečńık, V. Šindlář, Z. Geršlová, and G. Wimmer. OEFPIL: Optimal Estimation
of Function Parameters by Iterated Linearization, 2021. R package version 0.1.0. URL:
https://CRAN.R-project.org/package=OEFPIL.

67

https://CRAN.R-project.org/package=onls
https://CRAN.R-project.org/package=propagate
https://www.osti.gov/biblio/919175
https://www.osti.gov/biblio/919175
https://doi.org/10.2172/919175
https://ggplot2.tidyverse.org
https://doi.org/10.1145/1268776.1268782
https://CRAN.R-project.org/package=OEFPIL

	I Research project
	Project overview
	Basic project information
	Project team
	Background and state of knowledge
	Objectives and achieved goals

	II Introduction
	Evaluation of instrumented indentation measurements
	Determination of the indentation hardness and Young's modulus
	Calibration of the tip area function

	Niget software

	III Mathematical and statistical methods for data regression and uncertainty propagation
	Parametric nonlinear regression
	Overview of existing methods and software
	New algorithm
	Theoretical background
	Procedure description
	Confidence and prediction intervals

	Algorithm implementation
	System matrix inverse

	R package
	C library
	Validation of algorithm performance
	NIST reference data for nonlinear regression
	Examples for INRIM WTLS/CCC software

	Effective uncertainty propagation
	Higher-order uncertainty propagation
	SOERP
	R Propagate

	Latin Hypercube Sampling

	IV Application in instrumented indentation
	Estimating parameters of the unloading curve
	Uncertainty propagation
	Matrix-based uncertainty propagation
	Monte Carlo simulations

	Calibration of the contact area function
	New software tools
	Evaluation of different area function forms
	Comparison of evaluated functions at different contact depths
	The behaviour of different area function forms
	Influence of correlations present in area calibration data

	Example data evaluation
	Conclusion
	Bibliography

